- 专题介绍
斌斌爱学习
首先,想要澄清一下:之所以取名这个专题,仅仅是一个噱头,其实我更愿意把这个专题称作机器学习专题。提到这里,就不得不向大家介绍一下目前比较火的一些技术及它们之间的关系。首先是我们这个专题主要介绍的内容:机器学习。那么什么是机器学习呢?每个人对它的定义都不一样,我比较喜欢通俗的来介绍它:就是利用计算机通过特定的算法使其能够提高人们的生产效率的一种技术手段。所以,在机器学习中,算法是最重要的,如何根据特
- ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的高级应用
WangYan2022
生态chatgpt地学农业生态环境
目录专题一开启大模型专题二基于ChatGPT大模型提问框架专题三基于ChatGPT大模型的数据清洗专题四基于ChatGPT大模型的统计分析专题五基于ChatGPT大模型的机器学习专题六基于ChatGPT大模型的科研绘图专题七基于ChatGPT大模型的GIS应用专题八基于基于ChatGPT大模型的论文助手专题九基于基于ChatGPT大模型的项目基金助手专题十基于大模型的AI绘图以ChatGPT、LL
- 深度学习-20:神经科学、脑科学和稀疏特性
MTVideoAI
深度学习专题深度学习原理与实践深度学习生物神经网络脑科学稀疏特性数学基础
深度学习-20:神经科学、脑科学和稀疏特性深度学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!第二次世界大战之后,美苏在全维度展开了霸权竞赛,人工智能研究伴随着计算机的发展也开始进入佳境。经过经过半个多世纪的发展,人工智能逐渐形成:符号学派、贝叶斯学派和联结学派三个流派。符号学派:以谓词逻辑表示法理论为基础的符号主义占据了绝对的主流,但是到了上世纪90年代,符号主义具有的先天缺陷开始暴
- 弱监督学习梳理
jiandanjinxin
数据不完美,算法显神威——弱监督机器学习专题论坛Weakly-supervisedandUnsupervisedLearningWorkshopattheSIAMInternationalConferenceonDataMining(SDM2020).RelatedResearcherVALSE2019总结(1)-弱监督学习数据不完美,算法显神威——弱监督机器学习专题论坛image.pngimag
- 机器学习实战-52: K最近邻分类算法(k-Nearest Neighbor-KNN)
MTVideoAI
机器学习专题机器学习原理与实践机器学习K最近邻分类算法K-NearestNeighbor(KNN)分类算法Sklearn最近邻源码
机器学习实战-52:K最近邻分类算法深度学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!K最近邻(k-NearestNeighbor-KNN)分类算法属于监督学习算法。常用分类算法包括:逻辑回归(LogisticRegression,LR)、K最近邻(k-NearestNeighbor,KNN)、朴素贝叶斯模型(NaiveBayesianModel,NBM)、隐马尔科夫模型(Hidde
- 机器学习专题:特征选择(R)
挽山
载入数据library(readr)#载入数据sampleTraits<-read_csv("2-datTraits_95.csv",col_names=T)#datExpr1<-read_csv("6-DEGset-95_DEseq_miRBAse_batch_scale.csv",col_names=T)#用于box#datExpr2<-read_csv("5-DEGset_95_DEseq_
- 机器学习,详解SVM软间隔与对偶问题
TechFlow
机器学习机器学习支持向量机python算法
今天是机器学习专题的第34篇文章,我们继续来聊聊SVM模型。我们在上一篇文章当中推导了SVM模型在硬间隔的原理以及公式,最后我们消去了所有的变量,只剩下了α\alphaα。在硬间隔模型当中,样本是线性可分的,也就是说-1和1的类别可以找到一个平面将它完美分开。但是在实际当中,这样的情况几乎是不存在的。道理也很简单,完美是不存在的,总有些样本会出错。那针对这样的问题我们应该怎么解决呢?软间隔在上文当
- 机器学习专题:R实现(2)
挽山
1.数据集划分和预处理setwd()library(readr)#完整矩阵sampleTraits<-read_csv("2-datTraits_95.csv",col_names=T)datExpr<-read_csv("3-normdatExpr_DEseq_95_miRBAse_batch.csv",col_names=T)#标准化矩阵head(names(sampleTraits));he
- 详解深度学习感知机原理
蒸熟的土豆
大家好,欢迎阅读深度学习专题。我们之前的机器学习专题已经结束了,我们把机器学习领域当中常用的算法、模型以及它们的原理以及实现都过了一遍。虽然还有一些技术,比如马尔科夫、隐马尔科夫、条件随机场等等没有涉及到。但是这些内容相比来说要弱一些,使用频率并不是非常高,我们就不一一叙述了,感兴趣的同学可以自行研究一下。我想像是GBDT、SVM这些模型都能理解的话,那些模型想必也不在话下。深度学习简介深度学习最
- 机器学习 | 详解GBDT梯度提升树原理,看完再也不怕面试了
TechFlow
机器学习python机器学习决策树GBDT
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第30篇文章,我们今天来聊一个机器学习时代可以说是最厉害的模型——GBDT。虽然文无第一武无第二,在机器学习领域并没有什么最厉害的模型这一说。但在深度学习兴起和流行之前,GBDT的确是公认效果最出色的几个模型之一。虽然现在已经号称进入了深度学习以及人工智能时代,但是GBDT也没有落伍,它依然在很多的场景和公司当中被广泛使
- AI学习路线
Ai扫地僧(yao)
ai
pythonpython语法数学基础AI数学基础在线编程天池leetcode编程基础课数据分析numpy实践pandas实践Matplotlib实践工具与框架pytorchtensorflow机器学习机器学习原理与实践深度学习深度学习原理与实践强化学习计算机视觉视觉AI应用入门与实战AI技术解读数据挖掘数据挖掘原理数据挖掘实战语音识别语音识别原理与应用语音合成技术声纹识别技术人机对话NLPNLP技
- 深度学习-23:矩阵理论(L0/L1/L2范数)
MTVideoAI
深度学习专题深度学习原理与实践深度学习矩阵理论向量和张量L1范数
深度学习-23:矩阵理论(L0/L1/L2范数)深度学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!线性代数是数学的一个分支,广泛应用于科学和工程领域。线性代数和矩阵理论是机器学习和人工智能的重要数学基础。有短板的请补课,推荐《TheMatrixCookbook》。线性代数主要涉及矩阵理论,本节围绕矩阵理论展开。1标量、向量和张量标量:一个标量就是一个单独的数字向量:一个向量就是一列数
- 机器学习——十大数据挖掘之一的决策树CART算法
TechFlow
机器学习机器学习Python决策树分类模型
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法。CART算法全称是Classificationandregressiontree,也就是分类回归树的意思。和之前介绍的ID3和C4.5一样,CART算法同样是决策树模型的一种经典的实现。决策树这个模型一共有三种实现方式,前面我们已经介绍了ID3和C4.
- 解读 | 滴滴主题研究计划:机器学习专题+
stay_foolish12
机器学习机器学习滴滴
解读|滴滴主题研究计划:机器学习专题(上篇)解读|滴滴主题研究计划:机器学习专题(上篇)2018年7月31日管理员微信分享复制页面地址复制成功滴滴主题研究计划滴滴希望通过开放业务场景,与学术界发现与定义问题,合作共赢解决领域难题,构建高水平跨境知识与研究网络,构筑产学研合作共同体。2018年秋季期主题研究计划包含机器学习、计算机视觉、语音信号处理、地理信息技术和能源与汽车五大研究方向的15个来自滴
- 深入了解机器学习决策树模型——C4.5算法
TechFlow
机器学习机器学习决策树Python分类模型
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第22篇文章,我们继续决策树的话题。上一篇文章当中介绍了一种最简单构造决策树的方法——ID3算法,也就是每次选择一个特征进行拆分数据。这个特征有多少个取值那么就划分出多少个分叉,整个建树的过程非常简单。如果错过了上篇文章的同学可以从下方传送门去回顾一下:如果你还不会决策树,那你一定要进来看看既然我们已经有了ID3算法可以
- 机器学习 | 深入SVM原理及模型推导(一)
TechFlow
机器学习机器学习python支持向量机
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第32篇文章,我们来聊聊SVM。SVM模型大家可能非常熟悉,可能都知道它是面试的常客,经常被问到。它最早诞生于上世纪六十年代。那时候虽然没有机器学习的概念,也没有这么强的计算能力,但是相关的模型和理论已经提出了不少,SVM就是其中之一。SVM完全可以说是通过数学推导出来的模型,由于当时还没有计算机,所以模型当中的参数都是
- 机器学习——动手从决策树实现随机森林
TechFlow
机器学习python机器学习决策树bagging随机森林
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第26篇文章,我们一起聊聊另外一个集成学习模型,它就是大名鼎鼎的随机森林。随机森林在业内名气和使用范围都很广,曾经在许多算法比赛当中拔得头筹。另外,它也是一个通过组合多个弱分类器构建强分类器的经典模型,因此它在业内广受欢迎。本文基于决策树相关的文章,没有阅读过的同学可以从最上方的专辑查看过往决策树相关的文章。算法原理上一
- 机器学习实战-63:混合高斯模型聚类算法(Gaussian Mixture Model)
MTVideoAI
机器学习专题机器学习原理与实践机器学习混合高斯模型GaussianMixtureModel聚类算法
#机器学习实战-63:混合高斯模型聚类算法深度学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!机器学习分为监督学习、无监督学习和半监督学习(强化学习)。无监督学习最常应用的场景是聚类(clustering)和降维(dimensionreduction)。聚类算法包括:K均值聚类(K-Means)、层次聚类(HierarchicalClustering)和混合高斯模型(GaussianM
- 详解十大经典机器学习算法——EM算法
TechFlow
机器学习机器学习算法人工智能数学建模
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法。EM算法的英文全称是Expectation-maximizationalgorithm,即最大期望算法,或者是期望最大化算法。EM算法号称是十大机器学习算法之一,听这个名头就知道它非同凡响。我看过许多博客和资料,但是少有资料能够将这个算法的来龙去脉以及推导的细节全部都讲清楚,所
- 机器学习实战-54: 集成学习分类算法(ada-boost)
MTVideoAI
机器学习专题机器学习原理与实践机器学习分类算法集成学习ada-boost
集成学习分类算法深度学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!集成学习分类算法(ada-boost)属于监督学习算法。常用分类算法包括:逻辑回归(LogisticRegression,LR)、K最近邻(k-NearestNeighbor,KNN)、朴素贝叶斯模型(NaiveBayesianModel,NBM)、隐马尔科夫模型(HiddenMarkovModel)、支持向量机(Su
- 老唐全新深度学习专题系列视频
m0_59289028
深度学习音视频神经网络
目录├─02、深度学习入门视频课程(上篇)│├─10梯度下降算法原理.wmv│├─11反向传播.wmv│├─12神经网络整体架构.wmv│├─13神经网络模型实例演示.wmv│├─14过拟合问题解决方案.wmv│├─15Python环境搭建(推荐Anaconda方法).wmv│├─16Eclipse搭建python环境.wmv│├─17深度学习入门视频课程09动手完成简单神经网络.wmv│├─18
- 机器学习——详解经典聚类算法Kmeans
TechFlow
机器学习聚类算法机器学习PythonKmeanskmeans算法
本文始发于个人公众号:TechFlow,原创不易,求个关注今天是机器学习专题的第12篇文章,我们一起来看下Kmeans聚类算法。在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公式找到最近的K个邻居,通过邻居的结果来推测当前的结果。今天我们要来看的算法同样非常直观,也是最经典的聚类算法之一,它就是Kmeans。我们都知道,在英文当中Means是平均的意思,所以也有将它翻译成K-均
- 深度学习-30: 基础CNN模型和深度学习模型
MTVideoAI
深度学习专题深度学习原理与实践深度学习神经元卷积神经网络人工智能
深度学习-30:基础CNN模型和深度学习模型深度学习原理与实践(开源图书)-总目录,建议收藏,告别碎片阅读!1神经元人脑是生物进化和造物主的杰作,目前我们对微观人脑的知识可能比宏观的天文知识还要少。在众多人脑模型中,神经网络模型独树一帜。生物神经系统的基本结构和功能单位是神经元(神经细胞),而神经元的活动和信息在神经系统中的传输则表现为一定的生物电变化及其传播。神经元通过树突接收到外部信号,然后对
- 机器学习工作坊 - 计算机视觉
机器学习
活动介绍四月的MSLearn学堂,我们将进入机器学习专题。本月三期MSLearn学堂,我们会以工作坊的形式,结合具体应用实例,带领大家实践计算机视觉、自然语言处理,以及Azure机器学习。计算机视觉是人工智能最常用的场景,你可以将计算机视觉应用在图像分类,图像识别,人脸识别等多种场景。想象这样一个场景,我们需要开发一个应用程序来编目所有宠物。这种应用程序的一大特点,是能够自动通过照片来识别动物类别
- 《脚本之家》的AI书单
隨筆塗鴉
最近看了《脚本之家》的微信推送,里面罗列了一些关于AI的书籍,在此简记书单:入门基础:《人工智能(第2版)》【美】StephenLucci&DannyKopec《深度学习》【美】lanGoodfellow等《Python神经网络编程》【英】TariqRashid深度学习:《深度学习与TensorFlow实战》李建军等《深度学习原理与实践》陈仲铭等《Python深度学习》【英】N.D.Lewis《K
- 淘系技术联合承办GAITC 2021专题论坛即将召开,就深度学习议题展开讨论
阿里巴巴淘系技术团队官网博客
人工智能深度学习编程语言敏捷开发自然语言处理
6月5日至6日,由中国人工智能学会主办的2021全球人工智能技术大会(GAITC2021)将在杭州举办。本届大会重装升级,集会议、展览、大赛三位一体,打造一个立体呈现智能科技创新前沿的综合性平台。大会期间将举办20余场专题论坛。6月6日,由CAAI深度学习专委会主任季向阳教授、阿里巴巴集团副总裁、淘系技术部负责人汤兴担任论坛主席的《深度学习专题论坛》将拉开帷幕。期间,淘系技术部推荐算法负责人欧文武
- slam特征点深度 svd_ICRA20中的SLAM论文汇总(一)VSLAM
weixin_39789370
slam特征点深度svd
本文是第一部分,包含比较典型的VSLAM工作(包括VIO)。激光SLAM、多传感器融合、多机器人和其它脑洞SLAM留给第二部分。第三部分是深度学习专题。本文来源:知乎空间智能专栏趁着ICRA20还没结束(在线论文集开放到8月底),我和高仙机器人的赵敏同学人肉扫描了一遍SLAM和Localization主题下的所有论文,每篇文章写了一点摘要,大致做了归类,希望能帮各位节省一点时间。虽然摘要基本不含主
- Python数据科学学习笔记之——机器学习专题
前丨尘忆·梦
Python数据科学机器学习
机器学习专题1、专题:朴素贝叶斯分类1.1、朴素贝叶斯分类朴素贝叶斯分类器建立在贝叶斯分类方法的基础上,其数学基础是贝叶斯定理——一个描述统计量条件概率关系的公式。在贝叶斯分类中,我们希望确定一个具有某些特征的样本属于某类标签的概率,通常记为P(L|特征)。贝叶斯定理告诉我们,可以直接用下面的公式计算这个概率:P(L∣特征)=P(特征∣L)P(L)P(特征)P(L|特征)=\frac{P(特征|L
- 详解SVM模型——核函数是怎么回事
大家好,欢迎大家阅读周二机器学习专题,今天的这篇文章依然会讲SVM模型。也许大家可能已经看腻了SVM模型了,觉得我是不是写不出新花样来,翻来覆去地炒冷饭。实际上也的确没什么新花样了,不出意外的话这是本专题最后一篇文章了。下周我们就要开始深度学习之旅了,我相信很多同学期待这一天已经很久了,实际上我也一样,因为这个专题里讲的大部分内容已经只在面试环节会用到,而我已经很久没有面试了。所以让我们收拾一下激
- 深入理解SVM,详解SMO算法
TechFlow2019
今天是机器学习专题第35篇文章,我们继续SVM模型的原理,今天我们来讲解的是SMO算法。公式回顾在之前的文章当中我们对硬间隔以及软间隔问题都进行了分析和公式推导,我们发现软间隔和硬间隔的形式非常接近,只有少数几个参数不同。所以我们着重来看看软间隔的处理。通过拉格朗日乘子法以及对原问题的对偶问题进行求解,我们得到了二次规划:\[\begin{align*}&\min_{\alpha}\frac{1}
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$