- 机器学习算法笔记(1)——逻辑斯蒂回归Logistic处理二分类任务
念旧NiceJeo
机器学习算法笔记算法机器学习python可视化
逻辑斯蒂回归LogisticRegressor处理二分类任务一.逻辑斯蒂回归1.模型2.代价函数(损失函数)3.优化算法二.代码实现1.二维二分类2.多维二分类本系列为观看吴恩达老师的[中英字幕]吴恩达机器学习系列课程做的课堂笔记。图片来自视频截图。不得不说,看了老师的视频真的学到了很多。即使数学不好的同志们也可以看懂,真的可谓是细致入微了。一.逻辑斯蒂回归1.模型学过深度学习的同志们对这张图一定
- 机器学习算法笔记-逻辑回归
diudiu~bo
机器学习经典算法算法机器学习概率论
逻辑回归(LR)我的理解是,逻辑回归就是以改进的线性回归的方法求分类,改进的内容就是引入了非线性函数,最常用的就是sigmoid函数。如下图就是sigmoid函数,横轴z=0时,纵轴g(z)=0.5,z趋向于负无穷时,g(z)趋向于0,z趋向于正无穷时,g(z)趋向于1。其中z=thetaT*X,g(z)表示概率,逻辑回归目标函数的推导见下图。逻辑回归最经典的是二分类函数,二分类回归常用的损失函数
- 机器学习算法笔记:贝叶斯线性回归
xiaochengJF
机器学习机器学习
文章目录贝叶斯线性回归推断预测参考文献贝叶斯线性回归线性回归当噪声为高斯分布的时候,最小二乘损失导出的结果相当于对概率模型应用MLE,引入参数先验分布是高斯分布,那么MAP的结果相当于岭回归的正则化,如果先验是拉普拉斯分布,那么相当于Lasso的正则化。利用贝叶斯方法来求解参数的后验分布,线性回归的模型假设为:f(x)=wTxy=f(x)+εε∼N(0,σ2)\begin{aligned}f(x)
- ML机器学习算法笔记
l_aiya
机器学习算法python
文章目录5.2数据预处理5.2.1缺失值处理5.2.2数据规范化5.2.3主成分分析5.3线性回归(回归模型)5.4逻辑回归(分类模型)5.5神经网络5.5.3Python神经网络分类应用5.5.4Python神经网络回归应用5.6支持向量机核函数选择:5.7K-均值聚类PythonK-均值聚类算法应用5.2数据预处理5.2.1缺失值处理importpandasaspdimportnumpyasn
- 机器学习算法笔记:GMM高斯混合模型
xiaochengJF
机器学习机器学习
文章目录高斯混合模型极大似然估计EM求解GMM参考文献高斯混合模型为了解决高斯模型的单峰性的问题,引入多个高斯模型的加权平均来拟合多峰数据:p(x)=∑k=1KαkN(μk,Σk)p(x)=\sum\limits_{k=1}^K\alpha_k\mathcal{N}(\mu_k,\Sigma_k)p(x)=k=1∑KαkN(μk,Σk)引入隐变量zzz,表示对应样本xxx属于哪一个高斯分布,该变量
- 【机器学习算法笔记】6. 降维与主分量分析(PCA)
tostq
机器学习机器学习算法笔记机器学习算法PCA降维
【机器学习算法笔记】6.降维与主分量分析(PCA)6.1PCA算法特征选择问题是指将数据空间变换到特征空间,我们希望设计一种变换使得数据集由维数较少的有效特征来表示。PCA是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。通俗的理解,如果把所有的点都映射到一起,那么几
- 机器学习算法笔记-决策树
diudiu~bo
机器学习经典算法算法决策树sklearn
决策树(DT)树模型如何切分特征衡量标准如何选择特征衡量决策树不纯度的方法剪枝策略树模型决策树:从根节点开始一步步走到叶子节点(决策)所有的数据最终都会落到叶子节点,既可以分类也可以回归。决策树对于特征判断的顺序比较严格,如果判断顺序不同,最终的结果可能不同树的组成:根节点、非叶子结点与分支、叶子节点如何切分特征衡量标准熵:表示随机变量不确定性的度量,即混乱程度。不确定性越大,得到的熵值也就越大。
- 【机器学习算法笔记】5. 自组织映射SOM
tostq
机器学习机器学习算法笔记机器学习算法SOM自组织映射
【机器学习算法笔记】5.自组织映射SOM自组织映射是一类非监督学习算法自组织原则:1、自增强:如果两个神经元是同时激活的,则突触强度会选择性地增强;如果是异步激活的,突触强度会减弱2、竞争原则:可用资源的局限使得最强健增长的突触是以其他神经元作为代价的3、协作:在神经元级别中,对突触权值的修改趋于互相合作。4、结构化信息:在一个输入信号中存在的潜在次序和结构代表了冗余信息,其通过自组织系统以知识的
- 机器学习算法笔记:降维
xiaochengJF
机器学习机器学习
文章目录降维线性降维-主成分分析PCA原始空间重构最大投影方差最小重构距离SVD与PCoAP-PCA参考文献降维解决过拟合问题除正则化和添加数据外,降维就是最好的方法。一个nnn维球的体积可表示为:CRnCR^nCRn那么在球体积与边长为2R2R2R的超立方体比值为:limn→0CRn2nRn=0\lim\limits_{n\rightarrow0}\frac{CR^n}{2^nR^n}=0n→
- 机器学习算法笔记之5:支持向量机SVM
marsjhao
机器学习/深度学习机器学习svm核函数KKT条件
一、概述支持向量机(SupportVectorMachine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器,它是一种二分类模型,当采用了适当的核技巧后,支持向量机可以用于非线性分类。(1)线性可分支持向量机(硬间隔支持向量机):当训练数据线性可分时,通过硬间隔最大化,可以学得一个线性可分支持向量机。(2)线性支持向量机(软间隔支持向量机):当训练数据近似线性可分时,通过软间隔最大化,学
- 机器学习算法笔记-线性回归的实验过程
diudiu~bo
机器学习经典算法深度学习机器学习线性代数
线性回归的实验过程参数直接求解方法数据预处理梯度下降模块学习率对结果的影响学习率衰减3种策略的对比多项式回归模型复杂度样本数量对实验的影响正则化的作用参数直接求解方法如下图所示,根据目标函数的极值可以直接求出参数theta的表达式,用这种方法也可以直接求出线性回归的最终结果,但是这种方法并非适用于所有数据,因为theta的求解公式中包含了特征矩阵的逆矩阵,求解逆矩阵是有前提条件的,不是所有的矩阵都
- 机器学习算法笔记
_爱碎碎碎碎念
这是我的第一篇笔记,主要用来归纳几种经典的机器学习算法的思想、适用性、优缺点等。主要是失业在家,需要每天给自己点任务,接受大家监督。序言一些基础知识的引入,但是并没有递进关系。判别式和生成式模型机器学习方法按照训练数据有无标签将算法分成有监督和无监督的算法,这个概念浅显易懂就不多说。但是最近刷互联网公司的真题时多次预测判别式和生成式模型,就有必要提一提。判别式模型和生成式模型都是有监督的学习方法,
- 混淆矩阵
竹林皓月
机器学习算法笔记(二十七):混淆矩阵、精准率与召回率、F1Score转自:https://louyu.site/articles/machine-learning/2019/09/?p=1907/对于回归问题来说,评论算法的好坏我们讨论过MSE、MAE、RMSE、RSquared。但对于分类算法的评价,我们在前面始终使用“分类准确度”这一个指标。实际上分配准确度在评价分类算法的时候是存在问题的,这
- 【机器学习算法笔记】2. 学习算法与最小均方算法(LMS)
tostq
机器学习机器学习算法笔记
【机器学习算法笔记】2.学习算法与最小均方算法(LMS)最小均方算法是一个非常流行的在线学习算法。其是建立在自适应滤波和自适应调整权重上的。2.1迭代下降思想三种以迭代下降思想为基础的无约束最优化方法:2.1.1最速下降法:在最速下降法中,对权值向量的调整是在最速下降的方向进行的,即它是与梯度向量方向相反的,梯度向量记为:最速下降法一般表示为:其原理是根据一阶泰勒展开式:2.1.2牛顿法:牛顿法是
- 机器学习算法笔记:RBM受限玻尔兹曼机
xiaochengJF
机器学习
文章目录玻尔兹曼机受限玻尔兹曼机推断BinaryRBM参考文献玻尔兹曼机玻尔兹曼机是一种存在隐节点的无向图模型。在图模型中最简单的是朴素贝叶斯模型(朴素贝叶斯假设),引入单个隐变量后,发展出了GMM,如果单个隐变量变成序列的隐变量,就得到了状态空间模型(引入齐次马尔可夫假设和观测独立假设就有HMM,KalmanFilter,ParticleFilter),为了引入观测变量之间的关联,引入了一种最大
- 机器学习算法笔记:目录
xiaochengJF
机器学习
机器学习算法笔记前面大部分来源:【机器学习】【白板推导系列】【合集1~23】,笔记主要参考Bilibili-机器学习白板系列,其它参考的大部分资料也均已列出,纯属个人笔记,如有不当之处,见谅!机器学习算法笔记代码谱聚类LDS线性动态系统(卡尔曼滤波)贝叶斯线性回归RBM受限玻尔兹曼机ParticleFilter粒子滤波降维HMM隐马尔可夫模型SVM支持向量机线性分类GMM高斯混合模型EM期望最大M
- 【机器学习算法笔记系列】逻辑回归(LR)算法详解和实战
fpzRobert
机器学习
逻辑回归(LR)算法概述逻辑回归(LogisticRegression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。逻辑回归算法原理预测函数和决策边界逻辑回归的预测函数可以表示为:举一个例子,假设我们有许多样本,并在图中表示出来了,并且假设我们已经通过某种方法求出了LR模型的参数(如下图):这时,直线上方所有样本都是正样本y
- 机器学习算法笔记Ⅳ——主成分分析原理及应用
DeepHao
机器学习算法笔记
文章目录PCA算法简介相关矩阵原理特征值与特征向量正定矩阵与正交向量PCA原理推导函数求解PCA算法流程PCAmatlab计算PCA实现鸢尾花分类PCA数据降维处理KNN实现分类效果总结PCA算法简介主成分分析(英语:Principalcomponentsanalysis,PCA)是在不损失或者不很损失原始数据信息的情况下将一个多维数据进行降维处理,其中降维有两个目的:◆减少输入信息,突出特征信息
- 【机器学习算法笔记系列】朴素贝叶斯(NB)算法详解和实战
fpzRobert
机器学习
朴素贝叶斯(NB)算法概述朴素贝叶斯(NaïveBayes,NB)算法,是一种基于贝叶斯定理与特征条件独立假设的分类方法。朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。朴素贝叶斯算法原理贝叶斯定理条件概率:就是事件AAA在另外一个事件BBB已经发生条件下的
- 机器学习算法笔记之K近邻算法(KNeighborsClassifier)
smallcases
pythonsklearn
介绍:在sklearn库中,KNeighborsClassifier是实现K近邻算法的一个类,一般都使用欧式距离进行测量。这个类的结构如下:sklearn.neighbors.KNeighborsClassifierclasssklearn.neighbors.KNeighborsClassifier(n_neighbors=5,weights=’uniform’,algorithm=’auto’
- 机器学习算法笔记:LDS线性动态系统(卡尔曼滤波)
xiaochengJF
机器学习
文章目录线性动态系统模型定义LDS滤波递推公式PredictionUpdate参考文献线性动态系统动态系统两大问题:{LearningInference:p(Z∣X){decoding→HMM (维特比)probofevidence→p(O∣λ)(前向/后向)filtering: p(zt∣x1,x2,⋯ ,xt)smoothing: p(zt∣x1,x2,⋯ ,xT)(
- 【机器学习算法笔记系列】K-近邻(KNN)算法详解和实战
fpzRobert
机器学习数据挖掘
KNN算法算法概述K最近邻(K-NearestNeighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。算法原理:“近朱者赤近墨者黑”KNN的输入是测试数据和训练样本数据集,输出是测试样本的类别。KNN没有显示的训练过程,在测试时,计算测
- 【机器学习算法笔记系列】决策树(Decision Tree)算法详解和实战
fpzRobert
机器学习数据挖掘
决策树(DecisionTree)算法算法概述本文主要介绍机器学习中的决策树模型。决策树模型是一类算法的集合,在数据挖掘十大算法中,具体的决策树算法占有两席位置,即C4.5和CART算法。决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。同时也特别适合集成学习比如随机森林
- 常见机器学习算法笔记
星尘逸风
ML
机器学习开发的流程(sk-learn)加载数据集数据预处理选择模型(算法)训练模型评估模型如果模型达到要求,进入实战如果模型达不到要求,可以优化(调参数).扩展数据集,增加泛化能力,可以换模型——————————————————————·监督学习算法——————K-近邻算法(KNN)样本集包含每条数据与分类的对应关系输入新数据,将新数据的每个特征与样本集中数据对应特征比较计算新数据与样本集每条数据
- 机器学习算法笔记——KNN算法k近邻详解
qq_39830629
机器学习
一、什么是KNN(k近邻)算法?简单来说KNN算法就是通过在训练数据中找到最接近预测数据的均值,比如现在有一个人想要知道他的房子在某同城能租到的价格,他拿到了最近一年的所有租房记录(模拟训练数据)accommodates(容纳人数)bedrooms(卧室数量)bathrooms(卫生间数量)price(价格)3118542110042210811160211791043280他的房子数据是(测试数
- 机器学习算法笔记之9:偏差与方差、学习曲线
marsjhao
机器学习/深度学习
1.偏差与方差的理解在训练机器学习模型时,使用不同的训练集很可能会得到不同的估计模型,估计模型随着训练集的改变而变化的程度就叫做方差variance。我们训练得到的估计模型与实际真实模型的偏差即为bias,估计与实际差距越大,bias就越高。为了得到较低的误差,需要尽可能地降低方差和偏差,然而这两者不能同时减小,在bias与variance之间存在一个权衡trade-off。低偏差的模型可以很好的
- 机器学习算法笔记之1:kNN算法
marsjhao
机器学习/深度学习
一、k近邻算法1、概述k近邻(k-NearestNeighbor,简称kNN)算法是一种常见的监督学习算法。其工作机制可概括为:给定测试样本,基于某种距离度量找出训练集中与其距离最近的k个训练样本,通常k是不大于20的整数。然后基于这k个“邻居”的类别信息来进行预测,通常使用投票法,即选择这k个样本中出现最多的类别来标记测试样本,在回归任务中可使用“平均法”,即将这k个训练样本标记的平均值作为预测
- 机器学习算法笔记(一)
智能血压计
(1)容斥原理a.容斥原理是组合数学方法,可以求解集合、复合事件的概率等。b.计算几个集合并集的大小,先计算出所有单个集合的大小,减去所有两个集合相交的部分,加上三个集合相交的部分,再减去四个集合相交的部分,以此类推,一直计算到所有集合相交的部分。c.概率论:事件Ai(i=1,...,n),P(Ai)为对应事件发生的概率。至少一个事件发生的概率:转自:https://blog.csdn.net/m
- 【机器学习算法笔记系列】线性回归算法详解和实战
fpzRobert
机器学习数据挖掘
线性回归算法算法概述在统计学中,线性回归(LinearRegression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是由一个或多个称为回归系数的模型参数的线性组合而成。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之
- 机器学习算法笔记
夏季梦幻想
python
机器学习三个步骤Step1:ModelStep2:GoodnessofFunctionStep3:GradientDe’scent线性模型(linearmodel)y=b+w1x1+w1x2…神经网络TotalLoss等于CrossEntrpy之和使用GradientDescent使用backprapogation算偏微分使用dropout优化技巧:当神经网络很深时,训练结果不一定更好,因为有梯度
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l