- 机器学习算法笔记(1)——逻辑斯蒂回归Logistic处理二分类任务
念旧NiceJeo
机器学习算法笔记算法机器学习python可视化
逻辑斯蒂回归LogisticRegressor处理二分类任务一.逻辑斯蒂回归1.模型2.代价函数(损失函数)3.优化算法二.代码实现1.二维二分类2.多维二分类本系列为观看吴恩达老师的[中英字幕]吴恩达机器学习系列课程做的课堂笔记。图片来自视频截图。不得不说,看了老师的视频真的学到了很多。即使数学不好的同志们也可以看懂,真的可谓是细致入微了。一.逻辑斯蒂回归1.模型学过深度学习的同志们对这张图一定
- 机器学习算法笔记-逻辑回归
diudiu~bo
机器学习经典算法算法机器学习概率论
逻辑回归(LR)我的理解是,逻辑回归就是以改进的线性回归的方法求分类,改进的内容就是引入了非线性函数,最常用的就是sigmoid函数。如下图就是sigmoid函数,横轴z=0时,纵轴g(z)=0.5,z趋向于负无穷时,g(z)趋向于0,z趋向于正无穷时,g(z)趋向于1。其中z=thetaT*X,g(z)表示概率,逻辑回归目标函数的推导见下图。逻辑回归最经典的是二分类函数,二分类回归常用的损失函数
- 机器学习算法笔记:贝叶斯线性回归
xiaochengJF
机器学习机器学习
文章目录贝叶斯线性回归推断预测参考文献贝叶斯线性回归线性回归当噪声为高斯分布的时候,最小二乘损失导出的结果相当于对概率模型应用MLE,引入参数先验分布是高斯分布,那么MAP的结果相当于岭回归的正则化,如果先验是拉普拉斯分布,那么相当于Lasso的正则化。利用贝叶斯方法来求解参数的后验分布,线性回归的模型假设为:f(x)=wTxy=f(x)+εε∼N(0,σ2)\begin{aligned}f(x)
- ML机器学习算法笔记
l_aiya
机器学习算法python
文章目录5.2数据预处理5.2.1缺失值处理5.2.2数据规范化5.2.3主成分分析5.3线性回归(回归模型)5.4逻辑回归(分类模型)5.5神经网络5.5.3Python神经网络分类应用5.5.4Python神经网络回归应用5.6支持向量机核函数选择:5.7K-均值聚类PythonK-均值聚类算法应用5.2数据预处理5.2.1缺失值处理importpandasaspdimportnumpyasn
- 机器学习算法笔记:GMM高斯混合模型
xiaochengJF
机器学习机器学习
文章目录高斯混合模型极大似然估计EM求解GMM参考文献高斯混合模型为了解决高斯模型的单峰性的问题,引入多个高斯模型的加权平均来拟合多峰数据:p(x)=∑k=1KαkN(μk,Σk)p(x)=\sum\limits_{k=1}^K\alpha_k\mathcal{N}(\mu_k,\Sigma_k)p(x)=k=1∑KαkN(μk,Σk)引入隐变量zzz,表示对应样本xxx属于哪一个高斯分布,该变量
- 【机器学习算法笔记】6. 降维与主分量分析(PCA)
tostq
机器学习机器学习算法笔记机器学习算法PCA降维
【机器学习算法笔记】6.降维与主分量分析(PCA)6.1PCA算法特征选择问题是指将数据空间变换到特征空间,我们希望设计一种变换使得数据集由维数较少的有效特征来表示。PCA是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。通俗的理解,如果把所有的点都映射到一起,那么几
- 机器学习算法笔记-决策树
diudiu~bo
机器学习经典算法算法决策树sklearn
决策树(DT)树模型如何切分特征衡量标准如何选择特征衡量决策树不纯度的方法剪枝策略树模型决策树:从根节点开始一步步走到叶子节点(决策)所有的数据最终都会落到叶子节点,既可以分类也可以回归。决策树对于特征判断的顺序比较严格,如果判断顺序不同,最终的结果可能不同树的组成:根节点、非叶子结点与分支、叶子节点如何切分特征衡量标准熵:表示随机变量不确定性的度量,即混乱程度。不确定性越大,得到的熵值也就越大。
- 【机器学习算法笔记】5. 自组织映射SOM
tostq
机器学习机器学习算法笔记机器学习算法SOM自组织映射
【机器学习算法笔记】5.自组织映射SOM自组织映射是一类非监督学习算法自组织原则:1、自增强:如果两个神经元是同时激活的,则突触强度会选择性地增强;如果是异步激活的,突触强度会减弱2、竞争原则:可用资源的局限使得最强健增长的突触是以其他神经元作为代价的3、协作:在神经元级别中,对突触权值的修改趋于互相合作。4、结构化信息:在一个输入信号中存在的潜在次序和结构代表了冗余信息,其通过自组织系统以知识的
- 机器学习算法笔记:降维
xiaochengJF
机器学习机器学习
文章目录降维线性降维-主成分分析PCA原始空间重构最大投影方差最小重构距离SVD与PCoAP-PCA参考文献降维解决过拟合问题除正则化和添加数据外,降维就是最好的方法。一个nnn维球的体积可表示为:CRnCR^nCRn那么在球体积与边长为2R2R2R的超立方体比值为:limn→0CRn2nRn=0\lim\limits_{n\rightarrow0}\frac{CR^n}{2^nR^n}=0n→
- 机器学习算法笔记之5:支持向量机SVM
marsjhao
机器学习/深度学习机器学习svm核函数KKT条件
一、概述支持向量机(SupportVectorMachine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器,它是一种二分类模型,当采用了适当的核技巧后,支持向量机可以用于非线性分类。(1)线性可分支持向量机(硬间隔支持向量机):当训练数据线性可分时,通过硬间隔最大化,可以学得一个线性可分支持向量机。(2)线性支持向量机(软间隔支持向量机):当训练数据近似线性可分时,通过软间隔最大化,学
- 机器学习算法笔记-线性回归的实验过程
diudiu~bo
机器学习经典算法深度学习机器学习线性代数
线性回归的实验过程参数直接求解方法数据预处理梯度下降模块学习率对结果的影响学习率衰减3种策略的对比多项式回归模型复杂度样本数量对实验的影响正则化的作用参数直接求解方法如下图所示,根据目标函数的极值可以直接求出参数theta的表达式,用这种方法也可以直接求出线性回归的最终结果,但是这种方法并非适用于所有数据,因为theta的求解公式中包含了特征矩阵的逆矩阵,求解逆矩阵是有前提条件的,不是所有的矩阵都
- 机器学习算法笔记
_爱碎碎碎碎念
这是我的第一篇笔记,主要用来归纳几种经典的机器学习算法的思想、适用性、优缺点等。主要是失业在家,需要每天给自己点任务,接受大家监督。序言一些基础知识的引入,但是并没有递进关系。判别式和生成式模型机器学习方法按照训练数据有无标签将算法分成有监督和无监督的算法,这个概念浅显易懂就不多说。但是最近刷互联网公司的真题时多次预测判别式和生成式模型,就有必要提一提。判别式模型和生成式模型都是有监督的学习方法,
- 混淆矩阵
竹林皓月
机器学习算法笔记(二十七):混淆矩阵、精准率与召回率、F1Score转自:https://louyu.site/articles/machine-learning/2019/09/?p=1907/对于回归问题来说,评论算法的好坏我们讨论过MSE、MAE、RMSE、RSquared。但对于分类算法的评价,我们在前面始终使用“分类准确度”这一个指标。实际上分配准确度在评价分类算法的时候是存在问题的,这
- 【机器学习算法笔记】2. 学习算法与最小均方算法(LMS)
tostq
机器学习机器学习算法笔记
【机器学习算法笔记】2.学习算法与最小均方算法(LMS)最小均方算法是一个非常流行的在线学习算法。其是建立在自适应滤波和自适应调整权重上的。2.1迭代下降思想三种以迭代下降思想为基础的无约束最优化方法:2.1.1最速下降法:在最速下降法中,对权值向量的调整是在最速下降的方向进行的,即它是与梯度向量方向相反的,梯度向量记为:最速下降法一般表示为:其原理是根据一阶泰勒展开式:2.1.2牛顿法:牛顿法是
- 机器学习算法笔记:RBM受限玻尔兹曼机
xiaochengJF
机器学习
文章目录玻尔兹曼机受限玻尔兹曼机推断BinaryRBM参考文献玻尔兹曼机玻尔兹曼机是一种存在隐节点的无向图模型。在图模型中最简单的是朴素贝叶斯模型(朴素贝叶斯假设),引入单个隐变量后,发展出了GMM,如果单个隐变量变成序列的隐变量,就得到了状态空间模型(引入齐次马尔可夫假设和观测独立假设就有HMM,KalmanFilter,ParticleFilter),为了引入观测变量之间的关联,引入了一种最大
- 机器学习算法笔记:目录
xiaochengJF
机器学习
机器学习算法笔记前面大部分来源:【机器学习】【白板推导系列】【合集1~23】,笔记主要参考Bilibili-机器学习白板系列,其它参考的大部分资料也均已列出,纯属个人笔记,如有不当之处,见谅!机器学习算法笔记代码谱聚类LDS线性动态系统(卡尔曼滤波)贝叶斯线性回归RBM受限玻尔兹曼机ParticleFilter粒子滤波降维HMM隐马尔可夫模型SVM支持向量机线性分类GMM高斯混合模型EM期望最大M
- 【机器学习算法笔记系列】逻辑回归(LR)算法详解和实战
fpzRobert
机器学习
逻辑回归(LR)算法概述逻辑回归(LogisticRegression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。逻辑回归算法原理预测函数和决策边界逻辑回归的预测函数可以表示为:举一个例子,假设我们有许多样本,并在图中表示出来了,并且假设我们已经通过某种方法求出了LR模型的参数(如下图):这时,直线上方所有样本都是正样本y
- 机器学习算法笔记Ⅳ——主成分分析原理及应用
DeepHao
机器学习算法笔记
文章目录PCA算法简介相关矩阵原理特征值与特征向量正定矩阵与正交向量PCA原理推导函数求解PCA算法流程PCAmatlab计算PCA实现鸢尾花分类PCA数据降维处理KNN实现分类效果总结PCA算法简介主成分分析(英语:Principalcomponentsanalysis,PCA)是在不损失或者不很损失原始数据信息的情况下将一个多维数据进行降维处理,其中降维有两个目的:◆减少输入信息,突出特征信息
- 【机器学习算法笔记系列】朴素贝叶斯(NB)算法详解和实战
fpzRobert
机器学习
朴素贝叶斯(NB)算法概述朴素贝叶斯(NaïveBayes,NB)算法,是一种基于贝叶斯定理与特征条件独立假设的分类方法。朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。朴素贝叶斯算法原理贝叶斯定理条件概率:就是事件AAA在另外一个事件BBB已经发生条件下的
- 机器学习算法笔记之K近邻算法(KNeighborsClassifier)
smallcases
pythonsklearn
介绍:在sklearn库中,KNeighborsClassifier是实现K近邻算法的一个类,一般都使用欧式距离进行测量。这个类的结构如下:sklearn.neighbors.KNeighborsClassifierclasssklearn.neighbors.KNeighborsClassifier(n_neighbors=5,weights=’uniform’,algorithm=’auto’
- 机器学习算法笔记:LDS线性动态系统(卡尔曼滤波)
xiaochengJF
机器学习
文章目录线性动态系统模型定义LDS滤波递推公式PredictionUpdate参考文献线性动态系统动态系统两大问题:{LearningInference:p(Z∣X){decoding→HMM (维特比)probofevidence→p(O∣λ)(前向/后向)filtering: p(zt∣x1,x2,⋯ ,xt)smoothing: p(zt∣x1,x2,⋯ ,xT)(
- 【机器学习算法笔记系列】K-近邻(KNN)算法详解和实战
fpzRobert
机器学习数据挖掘
KNN算法算法概述K最近邻(K-NearestNeighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。算法原理:“近朱者赤近墨者黑”KNN的输入是测试数据和训练样本数据集,输出是测试样本的类别。KNN没有显示的训练过程,在测试时,计算测
- 【机器学习算法笔记系列】决策树(Decision Tree)算法详解和实战
fpzRobert
机器学习数据挖掘
决策树(DecisionTree)算法算法概述本文主要介绍机器学习中的决策树模型。决策树模型是一类算法的集合,在数据挖掘十大算法中,具体的决策树算法占有两席位置,即C4.5和CART算法。决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。同时也特别适合集成学习比如随机森林
- 常见机器学习算法笔记
星尘逸风
ML
机器学习开发的流程(sk-learn)加载数据集数据预处理选择模型(算法)训练模型评估模型如果模型达到要求,进入实战如果模型达不到要求,可以优化(调参数).扩展数据集,增加泛化能力,可以换模型——————————————————————·监督学习算法——————K-近邻算法(KNN)样本集包含每条数据与分类的对应关系输入新数据,将新数据的每个特征与样本集中数据对应特征比较计算新数据与样本集每条数据
- 机器学习算法笔记——KNN算法k近邻详解
qq_39830629
机器学习
一、什么是KNN(k近邻)算法?简单来说KNN算法就是通过在训练数据中找到最接近预测数据的均值,比如现在有一个人想要知道他的房子在某同城能租到的价格,他拿到了最近一年的所有租房记录(模拟训练数据)accommodates(容纳人数)bedrooms(卧室数量)bathrooms(卫生间数量)price(价格)3118542110042210811160211791043280他的房子数据是(测试数
- 机器学习算法笔记之9:偏差与方差、学习曲线
marsjhao
机器学习/深度学习
1.偏差与方差的理解在训练机器学习模型时,使用不同的训练集很可能会得到不同的估计模型,估计模型随着训练集的改变而变化的程度就叫做方差variance。我们训练得到的估计模型与实际真实模型的偏差即为bias,估计与实际差距越大,bias就越高。为了得到较低的误差,需要尽可能地降低方差和偏差,然而这两者不能同时减小,在bias与variance之间存在一个权衡trade-off。低偏差的模型可以很好的
- 机器学习算法笔记之1:kNN算法
marsjhao
机器学习/深度学习
一、k近邻算法1、概述k近邻(k-NearestNeighbor,简称kNN)算法是一种常见的监督学习算法。其工作机制可概括为:给定测试样本,基于某种距离度量找出训练集中与其距离最近的k个训练样本,通常k是不大于20的整数。然后基于这k个“邻居”的类别信息来进行预测,通常使用投票法,即选择这k个样本中出现最多的类别来标记测试样本,在回归任务中可使用“平均法”,即将这k个训练样本标记的平均值作为预测
- 机器学习算法笔记(一)
智能血压计
(1)容斥原理a.容斥原理是组合数学方法,可以求解集合、复合事件的概率等。b.计算几个集合并集的大小,先计算出所有单个集合的大小,减去所有两个集合相交的部分,加上三个集合相交的部分,再减去四个集合相交的部分,以此类推,一直计算到所有集合相交的部分。c.概率论:事件Ai(i=1,...,n),P(Ai)为对应事件发生的概率。至少一个事件发生的概率:转自:https://blog.csdn.net/m
- 【机器学习算法笔记系列】线性回归算法详解和实战
fpzRobert
机器学习数据挖掘
线性回归算法算法概述在统计学中,线性回归(LinearRegression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是由一个或多个称为回归系数的模型参数的线性组合而成。回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之
- 机器学习算法笔记
夏季梦幻想
python
机器学习三个步骤Step1:ModelStep2:GoodnessofFunctionStep3:GradientDe’scent线性模型(linearmodel)y=b+w1x1+w1x2…神经网络TotalLoss等于CrossEntrpy之和使用GradientDescent使用backprapogation算偏微分使用dropout优化技巧:当神经网络很深时,训练结果不一定更好,因为有梯度
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f