- The 2023 ICPC Asia Regionals Online Contest (2)-2023 ICPC网络赛第二场部分题解 I,M
小新-杂货铺
算法竞赛补题复盘网络算法c++
目录MDirtyWork(数学期望/贪心)IImpatientPatient(数学期望)原题地址:PTA|程序设计类实验辅助教学平台(pintia.cn)MDirtyWork(数学期望/贪心)ItisanotherICPCcontest.Yourteammatessketchedoutallsolutionstotheproblemsinafractionofasecondandwentawayt
- 中心极限定理
不倒的不倒翁先森
概率论
中心极限定理(CentralLimitTheorem,CLT)是概率论中的一个重要定理,它说明了在某些条件下,独立随机变量的和(或平均值)趋向于正态分布的性质。具体来说,中心极限定理可以描述为:定理表述:设(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,…,Xn)是一组相互独立、服从相同分布的随机变量,其数学期望为μ\muμ,方差为σ2\sigma^2σ2(有限且不为零
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- 数学期望:靠买彩票发家为什么不现实
石小沫_
第3章频率法3.3数学期望:靠买彩票发家为什么不现实➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖️3.3数学期望:靠买彩票发家为什么不现实。️数学期望是对长期价值的数字化衡量。️数学期望简称期望,本质上是对事件长期价值的数字化衡量。✨对随机事件不同结果的概率加权求平均。(就是先把每个给果各自发生的概率和带来的影响相乘,然后把得到的数字相加,最终得到的结果就是数学期望。)️“更有效率”是一个长期价值。️️️✨要判
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习之T与F分布
WEL测试
WEL测试人工智能机器学习人工智能
T分布T分布:数学期望为mu=0,方差:σ2=nn−2(n>2)\sigma^2=\frac{n}{n-2}\quad(n>2)σ2=n−2n(n>2)。相同自由度情况下,|t|越大,概率P越小;设X~N(0,1),Y~χ2(n),并且X和Y独立,则称随机变量t=XYnt=\frac{X}{\sqrt{\frac{Y}{n}}}t=nYX服从自由度为n的t分布,记为t~t(n),t(n)分布的概率
- 人工智能之估计量评估标准及区间估计
WEL测试
人工智能WEL测试人工智能概率论机器学习
评估估计量的标准无偏性:若估计量(X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn)的数学期望等于未知参数θ,即E(θ^)=θE(\hat\theta)=\thetaE(θ^)=θ则称θ^\hat\thetaθ^为θ的无偏估计量。估计量θ^\hat\thetaθ^的值不一定就是θ的真值,因为它是一个随机变量,若θ^\hat\thetaθ^是θ的无偏估计,则尽管的值随样
- Bernstein inequality伯恩施坦不等式
天空仍灿烂..
概率论人工智能
Bernsteininequality伯恩施坦不等式原公式变体公式我的疑惑问问人工智能公式知识点来源原公式概率论中,Bernsteininequalities给出了随机变量的和对平均值偏离的概率。在最简单的情况下,设X1,X2,…Xn是独立的伯努利随机变量,取值+1和-1的概率各是1/2,则对任意正数epsilon,有变体公式这个不等式的变体形式如下,设X1,X2,…Xn是数学期望为0的独立的随机
- 刘嘉概率论22讲《十.方差,围绕数学期望波动程度的度量》
阿木魔法学院
数学期望不能完整描述一个随机事件比如,你有一笔闲钱,有两个投资方案一,收益非常稳定,100%净赚5万二,不稳定,50%机会赚20万,50%机会亏10万。如果从数学期望公式来算,他们俩都是盈利5万。但是这两个方案并不一样,差别很大,具体在哪呢?一,两个方案收益稳定性不同,第一个非常稳定,第二个波动性很大。所以,数学期望不同,并不代表两件事价值一样,随机结果的波动程度,同样对一件事情的价值,对我们的决
- 机器学习之正态分布
WEL测试
人工智能WEL测试机器学习人工智能
正态分布:也称常态分布,又名高斯分布。正态曲线呈钟形,两头低,中间高,左右对称因其曲线呈钟形,也称钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2\sigma^2σ2的正态分布,记为N(μ,σ2σ^2σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布时标准正态分布。概率密度函数为:f(x)=1σ2πe−
- 学习笔记
曲线之前剑刃之上形势节君
新公式改进=突变+选择《值得你记住的日课公式》要更新了(不全,欢迎补充):S(成功)=Q(执行力)r(想法的好坏)成功=天赋+运气大成功=多一点点天赋+很多好运气拥有更多资源=获得更好的结果成长=压力+休息知识=体验×敏感度好目标=难度X具体数学期望=成功的收益×成功的概率-失败的损失×失败的概率亲密良好的关系=开放+响应响应=理解+接受+关心梦想+现实+决心=成功人生痛苦+反思=进步塑造者=远见
- 机器学习---无偏估计
三月七꧁ ꧂
机器学习机器学习人工智能概率论
1.如何理解无偏估计无偏估计:就是我认为所有样本出现的概率⼀样。假如有N种样本我们认为所有样本出现概率都是1/N。然后根据这个来计算数学期望。此时的数学期望就是我们平常讲的平均值。数学期望本质就是平均值。2.无偏估计为何叫做“无偏”?它要“估计”什么?首先回答第⼀个问题:它要“估计”什么?它要估计的是整体的数学期望(平均值)。第⼆个问题:那为何叫做无偏?有偏是什么?假设这个是⼀些样本的集合X=x1
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- E - Sugoroku 3(数学期望)
临江浪怀柔ℳ
算法
思路:数学推导过程代码:constlonglongmod=998244353;intn;inlineintqmi(intx,inty){intz=1;for(;y;y>>=1,x=x*x%mod)if(y&1)z=z*x%mod;returnz;}voidsolve(){cin>>n;vectora(n+2),sum(n+2),dp(n+2);for(inti=1;i>a[i];for(inti=
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 第三周:常用的数据分布
结尾_402b
1、正态分布正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution)正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正
- R语言机器学习与临床预测模型30--主成分分析(PCA)
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01基础知识介绍方差:用来衡量随机变量与其数学期望(均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。协方差:度量两个随机变量关系的统计量,协方差为0的两个随机变量是不相关的。协方差矩阵:在统
- 蒙特卡洛法求积分
Phoenix Studio
统计学机器学习数据分析twittersvg
问题一:我们如何用蒙特卡洛方法求积分?问题二:如何近似求一个随机变量的数学期望?问题三:估计的误差是多少?问题四:如何从理论上对蒙特卡洛估计做分析?结论import numpy as npimport matplotlib.pyplot as pltimport seaborn as snssns.set_style('whitegrid')问题一:我们如何用蒙特卡洛方法求积分?你眼中的蒙特卡洛方
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- 基于MATLAB的均值,方差,变量的矩(附完整代码与例题)
唠嗑!
MATLABmatlab网络安全
目录一.数学期望与方差二.样本的均值与方差三.MATLAB代码四.例题与代码4.1正态分布4.2Rayleigh分布五.随机变量的矩5.1原点矩与中心距5.2例题35.3样本向量的原点矩与中心矩一.数学期望与方差将某连续随机变量x的概率密度函数记为p(x),其数学期望E[x]可计算为:更进一步,方差D[x]可计算为:二.样本的均值与方差在实际中测出的一组样本数据写做:该样本的均值计算为:样本的方差
- 刘嘉概率论22讲《九, 对随机事件长期价值的衡量》
阿木魔法学院
数学期望期望是对长期价值的数字化衡量数学期望简称期望,计算方法很简单,就是对随机事件不同结果的概率加权求平均。用大白话说就是,先把每个结果各自发生的概率和带来的影响相乘,然后吧算出来的数相加。最后的结果就是数学期望了。比如一只股票现在50元,有40%的概率涨到60,有30%的概率保持不变,有30%的概率跌倒35那么他到底值不值得买。(60-50)*40%+(50-50)*30%+(35-50)*3
- 概率论与数理统计 第四章 随机变量的数字特征
Jarkata
课前导读求随机变量的数字特征,需要用到高等数学中积分和级数收敛的定义。第一节数学期望离散型随机变量数学期望(均值)的定义:注意,该级数需要绝对收敛连续型随机变量的数学期望:数学期望的物理含义:质心。常用离散随机变量的数学期望:两点分布;二项分布;泊松分布以上三种分布的期望的直观解释:常用连续型随机变量的数学期望:均匀分布:;指数分布;正态分布直观解释:三、数学期望的性质数学期望的性质定理:严格意义
- 期货开户投机以获取利润为目的
shuimengan8
有人从风险的角度去区分,说投资的风险小一些,投机的风险大一些。但如果这么说的话,所有天使投资人都该被叫作“天使投机人”,因为普遍来讲,80%以上的项目都归零了嘛。所以投资和投机,本质上都是一回事儿,就是在自认为数学期望大于0的前提下,以放弃使用当下价值为成本,去获取远期利益的一种行为。有人从目的的角度去区分,说投资是以获取资本产生的利润为目的,投机是以获取资本的价值增幅为目的。这看起来很正当,也符
- 简单理解数学期望
Xfree416
来看两个例子1.一篮球选手的三分球命中率是30%两分球命中率为40%如果他有无限开火权,应该多投两分球还是三分球呢?2.投筛子游戏,投中6点赢10元,投中1点输10元,其余点数不算,游戏公平吗?单凭直觉来看,第二个游戏应该是公平的,但第一个就很难判断应该投2分还是3分了。数学工具可以帮助我们在一定范围内消除不确定性,让我们的决策更加有理有据,而不是只凭感觉。第一题的数据3分0.32分0.4可以将数
- 山人求道篇:六、加减仓思路
车忻青
量化交易系统个人建设与完善金融
在百度输入加减仓你看出来的都是些什么东西:网格加仓、正(倒)金字塔加仓、浮盈(浮亏)加仓、还有什么更离谱的倍数加仓(去澳门破产的人喜欢用的),马丁类的加仓,你结合数学原理,看一看最后数学期望是不是正的?是不是坚持到最后,反而是亏光?数学期望都不能证明是盈利的方法,我劝你别用。一些看起来更科学的凯利公式,也是有巨大缺陷的,因为你无法预测下一次的赔率,也就是有未知量,你可以拿着历史赔率去测试,看看效果
- E(XY)的求法
悟空不是猴子
统计概率论
注意只有当X,Y相互独立时,才有E(XY)=EXEY而由表格可知,P(X=0,Y=0)=0.07≠P(X=0)P(Y=0)=0.23*0.22所以X,Y不相互独立利用随机变量函数的数学期望的求解方法:E(XY)=∑i*j*(Pij),其中i为X的取值,j为Y的取值,Pij为对应于X=i,Y=j的联合分布列中的相应概率,求和是对所有的i,j求和。2.已知X,Y的联合密度,求X,Y的协方差:点击这里。
- 协方差矩阵
Σίσυφος1900
matlab算法
协方差矩阵有什么意义?-知乎一、概述最近一直在搞点云ICP配准,里面用到了一个很重要的数学上东西就是协方差,由于面临的是两个点云之间的关系,那我们就需要研究一下协方差矩阵,后来慢慢的想了一些,之前我在做2D使用Halcon的时候那个轮廓匹配、形状匹配、以及简单的那个灰度匹配的核心也是这个东西。其他领域的我们暂且不谈,就从点云匹配和2D匹配上就可以看出这个东西的重要性。二、协方差矩阵数学期望数学期望
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一