- The 2023 ICPC Asia Regionals Online Contest (2)-2023 ICPC网络赛第二场部分题解 I,M
小新-杂货铺
算法竞赛补题复盘网络算法c++
目录MDirtyWork(数学期望/贪心)IImpatientPatient(数学期望)原题地址:PTA|程序设计类实验辅助教学平台(pintia.cn)MDirtyWork(数学期望/贪心)ItisanotherICPCcontest.Yourteammatessketchedoutallsolutionstotheproblemsinafractionofasecondandwentawayt
- 中心极限定理
不倒的不倒翁先森
概率论
中心极限定理(CentralLimitTheorem,CLT)是概率论中的一个重要定理,它说明了在某些条件下,独立随机变量的和(或平均值)趋向于正态分布的性质。具体来说,中心极限定理可以描述为:定理表述:设(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,…,Xn)是一组相互独立、服从相同分布的随机变量,其数学期望为μ\muμ,方差为σ2\sigma^2σ2(有限且不为零
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- 数学期望:靠买彩票发家为什么不现实
石小沫_
第3章频率法3.3数学期望:靠买彩票发家为什么不现实➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖️3.3数学期望:靠买彩票发家为什么不现实。️数学期望是对长期价值的数字化衡量。️数学期望简称期望,本质上是对事件长期价值的数字化衡量。✨对随机事件不同结果的概率加权求平均。(就是先把每个给果各自发生的概率和带来的影响相乘,然后把得到的数字相加,最终得到的结果就是数学期望。)️“更有效率”是一个长期价值。️️️✨要判
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习之T与F分布
WEL测试
WEL测试人工智能机器学习人工智能
T分布T分布:数学期望为mu=0,方差:σ2=nn−2(n>2)\sigma^2=\frac{n}{n-2}\quad(n>2)σ2=n−2n(n>2)。相同自由度情况下,|t|越大,概率P越小;设X~N(0,1),Y~χ2(n),并且X和Y独立,则称随机变量t=XYnt=\frac{X}{\sqrt{\frac{Y}{n}}}t=nYX服从自由度为n的t分布,记为t~t(n),t(n)分布的概率
- 人工智能之估计量评估标准及区间估计
WEL测试
人工智能WEL测试人工智能概率论机器学习
评估估计量的标准无偏性:若估计量(X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn)的数学期望等于未知参数θ,即E(θ^)=θE(\hat\theta)=\thetaE(θ^)=θ则称θ^\hat\thetaθ^为θ的无偏估计量。估计量θ^\hat\thetaθ^的值不一定就是θ的真值,因为它是一个随机变量,若θ^\hat\thetaθ^是θ的无偏估计,则尽管的值随样
- Bernstein inequality伯恩施坦不等式
天空仍灿烂..
概率论人工智能
Bernsteininequality伯恩施坦不等式原公式变体公式我的疑惑问问人工智能公式知识点来源原公式概率论中,Bernsteininequalities给出了随机变量的和对平均值偏离的概率。在最简单的情况下,设X1,X2,…Xn是独立的伯努利随机变量,取值+1和-1的概率各是1/2,则对任意正数epsilon,有变体公式这个不等式的变体形式如下,设X1,X2,…Xn是数学期望为0的独立的随机
- 刘嘉概率论22讲《十.方差,围绕数学期望波动程度的度量》
阿木魔法学院
数学期望不能完整描述一个随机事件比如,你有一笔闲钱,有两个投资方案一,收益非常稳定,100%净赚5万二,不稳定,50%机会赚20万,50%机会亏10万。如果从数学期望公式来算,他们俩都是盈利5万。但是这两个方案并不一样,差别很大,具体在哪呢?一,两个方案收益稳定性不同,第一个非常稳定,第二个波动性很大。所以,数学期望不同,并不代表两件事价值一样,随机结果的波动程度,同样对一件事情的价值,对我们的决
- 机器学习之正态分布
WEL测试
人工智能WEL测试机器学习人工智能
正态分布:也称常态分布,又名高斯分布。正态曲线呈钟形,两头低,中间高,左右对称因其曲线呈钟形,也称钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2\sigma^2σ2的正态分布,记为N(μ,σ2σ^2σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布时标准正态分布。概率密度函数为:f(x)=1σ2πe−
- 学习笔记
曲线之前剑刃之上形势节君
新公式改进=突变+选择《值得你记住的日课公式》要更新了(不全,欢迎补充):S(成功)=Q(执行力)r(想法的好坏)成功=天赋+运气大成功=多一点点天赋+很多好运气拥有更多资源=获得更好的结果成长=压力+休息知识=体验×敏感度好目标=难度X具体数学期望=成功的收益×成功的概率-失败的损失×失败的概率亲密良好的关系=开放+响应响应=理解+接受+关心梦想+现实+决心=成功人生痛苦+反思=进步塑造者=远见
- 机器学习---无偏估计
三月七꧁ ꧂
机器学习机器学习人工智能概率论
1.如何理解无偏估计无偏估计:就是我认为所有样本出现的概率⼀样。假如有N种样本我们认为所有样本出现概率都是1/N。然后根据这个来计算数学期望。此时的数学期望就是我们平常讲的平均值。数学期望本质就是平均值。2.无偏估计为何叫做“无偏”?它要“估计”什么?首先回答第⼀个问题:它要“估计”什么?它要估计的是整体的数学期望(平均值)。第⼆个问题:那为何叫做无偏?有偏是什么?假设这个是⼀些样本的集合X=x1
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- E - Sugoroku 3(数学期望)
临江浪怀柔ℳ
算法
思路:数学推导过程代码:constlonglongmod=998244353;intn;inlineintqmi(intx,inty){intz=1;for(;y;y>>=1,x=x*x%mod)if(y&1)z=z*x%mod;returnz;}voidsolve(){cin>>n;vectora(n+2),sum(n+2),dp(n+2);for(inti=1;i>a[i];for(inti=
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 第三周:常用的数据分布
结尾_402b
1、正态分布正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution)正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正
- R语言机器学习与临床预测模型30--主成分分析(PCA)
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01基础知识介绍方差:用来衡量随机变量与其数学期望(均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。协方差:度量两个随机变量关系的统计量,协方差为0的两个随机变量是不相关的。协方差矩阵:在统
- 蒙特卡洛法求积分
Phoenix Studio
统计学机器学习数据分析twittersvg
问题一:我们如何用蒙特卡洛方法求积分?问题二:如何近似求一个随机变量的数学期望?问题三:估计的误差是多少?问题四:如何从理论上对蒙特卡洛估计做分析?结论import numpy as npimport matplotlib.pyplot as pltimport seaborn as snssns.set_style('whitegrid')问题一:我们如何用蒙特卡洛方法求积分?你眼中的蒙特卡洛方
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- 基于MATLAB的均值,方差,变量的矩(附完整代码与例题)
唠嗑!
MATLABmatlab网络安全
目录一.数学期望与方差二.样本的均值与方差三.MATLAB代码四.例题与代码4.1正态分布4.2Rayleigh分布五.随机变量的矩5.1原点矩与中心距5.2例题35.3样本向量的原点矩与中心矩一.数学期望与方差将某连续随机变量x的概率密度函数记为p(x),其数学期望E[x]可计算为:更进一步,方差D[x]可计算为:二.样本的均值与方差在实际中测出的一组样本数据写做:该样本的均值计算为:样本的方差
- 刘嘉概率论22讲《九, 对随机事件长期价值的衡量》
阿木魔法学院
数学期望期望是对长期价值的数字化衡量数学期望简称期望,计算方法很简单,就是对随机事件不同结果的概率加权求平均。用大白话说就是,先把每个结果各自发生的概率和带来的影响相乘,然后吧算出来的数相加。最后的结果就是数学期望了。比如一只股票现在50元,有40%的概率涨到60,有30%的概率保持不变,有30%的概率跌倒35那么他到底值不值得买。(60-50)*40%+(50-50)*30%+(35-50)*3
- 概率论与数理统计 第四章 随机变量的数字特征
Jarkata
课前导读求随机变量的数字特征,需要用到高等数学中积分和级数收敛的定义。第一节数学期望离散型随机变量数学期望(均值)的定义:注意,该级数需要绝对收敛连续型随机变量的数学期望:数学期望的物理含义:质心。常用离散随机变量的数学期望:两点分布;二项分布;泊松分布以上三种分布的期望的直观解释:常用连续型随机变量的数学期望:均匀分布:;指数分布;正态分布直观解释:三、数学期望的性质数学期望的性质定理:严格意义
- 期货开户投机以获取利润为目的
shuimengan8
有人从风险的角度去区分,说投资的风险小一些,投机的风险大一些。但如果这么说的话,所有天使投资人都该被叫作“天使投机人”,因为普遍来讲,80%以上的项目都归零了嘛。所以投资和投机,本质上都是一回事儿,就是在自认为数学期望大于0的前提下,以放弃使用当下价值为成本,去获取远期利益的一种行为。有人从目的的角度去区分,说投资是以获取资本产生的利润为目的,投机是以获取资本的价值增幅为目的。这看起来很正当,也符
- 简单理解数学期望
Xfree416
来看两个例子1.一篮球选手的三分球命中率是30%两分球命中率为40%如果他有无限开火权,应该多投两分球还是三分球呢?2.投筛子游戏,投中6点赢10元,投中1点输10元,其余点数不算,游戏公平吗?单凭直觉来看,第二个游戏应该是公平的,但第一个就很难判断应该投2分还是3分了。数学工具可以帮助我们在一定范围内消除不确定性,让我们的决策更加有理有据,而不是只凭感觉。第一题的数据3分0.32分0.4可以将数
- 山人求道篇:六、加减仓思路
车忻青
量化交易系统个人建设与完善金融
在百度输入加减仓你看出来的都是些什么东西:网格加仓、正(倒)金字塔加仓、浮盈(浮亏)加仓、还有什么更离谱的倍数加仓(去澳门破产的人喜欢用的),马丁类的加仓,你结合数学原理,看一看最后数学期望是不是正的?是不是坚持到最后,反而是亏光?数学期望都不能证明是盈利的方法,我劝你别用。一些看起来更科学的凯利公式,也是有巨大缺陷的,因为你无法预测下一次的赔率,也就是有未知量,你可以拿着历史赔率去测试,看看效果
- E(XY)的求法
悟空不是猴子
统计概率论
注意只有当X,Y相互独立时,才有E(XY)=EXEY而由表格可知,P(X=0,Y=0)=0.07≠P(X=0)P(Y=0)=0.23*0.22所以X,Y不相互独立利用随机变量函数的数学期望的求解方法:E(XY)=∑i*j*(Pij),其中i为X的取值,j为Y的取值,Pij为对应于X=i,Y=j的联合分布列中的相应概率,求和是对所有的i,j求和。2.已知X,Y的联合密度,求X,Y的协方差:点击这里。
- 协方差矩阵
Σίσυφος1900
matlab算法
协方差矩阵有什么意义?-知乎一、概述最近一直在搞点云ICP配准,里面用到了一个很重要的数学上东西就是协方差,由于面临的是两个点云之间的关系,那我们就需要研究一下协方差矩阵,后来慢慢的想了一些,之前我在做2D使用Halcon的时候那个轮廓匹配、形状匹配、以及简单的那个灰度匹配的核心也是这个东西。其他领域的我们暂且不谈,就从点云匹配和2D匹配上就可以看出这个东西的重要性。二、协方差矩阵数学期望数学期望
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比