- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
线性代数是大学数学中非常核心的基础课程,教材繁多,国内外有许多经典的教材。国内比较有名且使用较为广泛的线性代数中文教材见书籍8。书籍8线性代数中文教材推荐:(a)简明线性代数(丘维声);(b)线性代数(居于马);(c)线性代数(李尚志);(d)线性代数(李炯生等);(e)线性代数五讲(龚昇);(f)线性代数的几何意义(任广千等)北京大学的丘维声教授编写的《简明线性代数》[17]是北京市高等教育精品
- 人工智能中的线性代数与矩阵论学习秘诀之学习路线
audyxiao001
人工智能怎么学线性代数人工智能矩阵
线性代数和矩阵论的学习对于打好AI的理论基础非常重要,要加以重视和认真学习。下面给出学习的路线仅供参考,个人可以根据自己的知识储备、数学能力以及研究方向加以调整。具体的学习路线见图3-8。在初级入门阶段,主要打好线性代数的理论基础,建议中文和英文教材各选一本进行学习,即从初级入门教材1~4和5~8中各选一本进行学习。在中级提高阶段,主要弄清楚线性代数理论的本质和物理含义,特别是线性代数的几何意义,
- Schur引理
patrickpdx
矩阵论矩阵
这是Schur引理的引理Schur引理的复矩阵版本和实矩阵版本摘自《矩阵论教程》第2版,张绍飞,p49
- 矩阵函数
patrickpdx
矩阵论
文章目录矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数通过Jordan标准形求矩阵函数待定系数法求矩阵函数矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大学出版社,2000.p158通过Jordan标准形求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大
- 矩阵分解——QR分解
patrickpdx
矩阵论
文章目录满秩方阵的QR分解矩阵QR分解例题列满秩矩阵的QR分解满秩方阵的QR分解可以看到,该证明过程是构造性的,即通过构造出了QQQ,RRR的方式,证明了QR分解的存在性,不仅证明了存在性,还为我们提供了QR分解中QQQ和RRR的求解方法矩阵QR分解例题摘自《矩阵论》程云鹏,西安交通大学,1999年6月第2版,p203列满秩矩阵的QR分解摘自《矩阵论教程》第二版张绍飞2.1节
- 【线性代数与矩阵论】矩阵的酉相似
你哥同学
线性代数与矩阵论线性代数矩阵
矩阵的酉相似(合同变换)2023年11月7日#algebra文章目录矩阵的酉相似(合同变换)1.酉矩阵2.酉相似3.Schur分解定理4.正规矩阵5.酉相似对角化6.Hermit矩阵,反Hermit矩阵及酉矩阵的特性7.Hermit矩阵的正定性下链1.酉矩阵设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,若A{A}A满足AHA=AAH=IA^\mathrmHA=AA^
- 深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
搬砖班班长
深度学习人工智能学习经验分享
经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。下面给出几个链接,可以用于平时充电学习。知乎上的:机器学习与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
- 【线性代数与矩阵论】范数理论
你哥同学
线性代数与矩阵论线性代数矩阵概率论范数
范数理论2023年11月16日文章目录范数理论1.向量的范数2.常用向量范数3.向量范数的等价性4.矩阵的范数5.常用的矩阵范数6.矩阵范数与向量范数的相容性7.矩阵范数诱导的向量范数8.由向量范数诱导的矩阵范数9.矩阵范数的酉不变性10.矩阵范数的等价性11.长方阵的范数下链1.向量的范数向量的长度也称为向量的二范数[!quote]-长度的定理设x,y,z∈Cn , λ∈C{x,y,z\in
- 【线性代数与矩阵论】矩阵的谱半径与条件数
你哥同学
线性代数与矩阵论线性代数矩阵概率论条件数
矩阵的谱半径与条件数2023年11月18日文章目录矩阵的谱半径与条件数1.矩阵的谱半径2.谱半径与范数的关系3.矩阵的条件数下链1.矩阵的谱半径定义设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,λ1,λ2,⋯ ,λn{\lambda_1,\lambda_2,\cdots,\lambda_n}λ1,λ2,⋯,λn是A的特征值,则称ρ(A)=max1≤i≤n∣λi∣\
- SVD分解原理及基于SVD分解的图像压缩和去噪
nwsuaf_huasir
信号处理
SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。SVD分解的公式如下,其中U和V都为正交矩阵,中间的为特征值构成的对角矩阵,相对于正交对角分解,SVD分解的适应性更强,应为A不必是方阵,下面是SVD分解的公式。用SVD做图像压
- 个人猜测:关于《矩阵论》中的QR分解为什么用Q来表示正交矩阵(orthogonal matrix )
SleepingBug
矩阵线性代数
为什么QR分解用Q来表示正交矩阵(orthogonalmatrix)?搜过Google,问过ChatGPT,什么说是约定俗成,什么说是历史原因,都没有一个合理的解释。都没有准确的答案,下面这两个链接还有人追溯最开始用QR写法的文章,但还是没有结论1)linearalgebra-Whyareorthogonalmatricessooftendenoted$Q$?-MathOverflow2)line
- 只不过孤岛罢了:我的2023年总结
染念
折腾心得年终总结人工智能深度学习性能优化c++
2023已悄然过去,还记得跨年夜那天,我突然接到一星期要期末考的消息,我的内心是多么奔溃,先不说一天一门强度如此之高,重要的是矩阵论,工程优化等等科目,还要速成,于是麻木得预习一日又一日,终于在10号结束了研一上的所有考试。剩下的就靠老师捞菜菜了。好了,吐槽的完了,现在正式地总结我的23年。文章目录身份上知识上比赛上思想上创作内容上感情上项目上数码产品上总结身份上这年惊喜的是1月份,我在蓝桥云课获
- 加密解密工具 之 希尔密码
一个工具箱
希尔密码(HillCipher),是运用基本矩阵论原理的替换密码,每个字母当作26进制数字:A=0,B=1,C=2...一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果mod26。用作加密的矩阵(即密匙)必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。简介希尔密码是运用基本矩阵论原理的替换密码,由LesterS.Hill在1929年发明。每个字母当作26进制数字
- 利用矩阵特征值解决微分方程【1】
唠嗑!
信息论安全矩阵网络安全
目录一.特征值介绍二.单变量常微分方程三.利用矩阵解决微分方程问题四.小结4.1矩阵论4.2特征值与特征向量内涵4.3应用一.特征值介绍线性代数有两大基础问题:如果A为对角阵的话,那么问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。在已知解的情况下,可以利用矩阵行列式解决问题。根据Cramer定则:将以下矩阵的行列式看成一个多项式:该多项式的根即为特征值。当矩阵维度较高时,这个方
- 《矩阵分析》笔记
热水过敏
矩阵笔记线性代数
来源:【《矩阵分析》期末速成主讲人:苑长(5小时冲上90+)】https://www.bilibili.com/video/BV1A24y1p76q?vd_source=c4e1c57e5b6ca4824f87e74170ffa64d这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没时间听太长的课,就看了b站上这个视频,笔记几乎就是原视频copy,和教材相比有一些没提到(如奇异值分解、House
- [矩阵论]哈尔滨工业大学全72讲
东北霸主劳德利
全科笔记矩阵python机器学习
主页有博主其他上万字精品笔记,例如数值分析,电磁学.01哈尔滨工业大学严质彬教授的矩阵分析课程,讲解了矩阵分析的基础知识和重要性。教材没有特别指定,建议购买北京理工大学的水荣昌的《矩阵分析》。课程假定学生已经学过高等数学中的线性代数,旨在为控制学科打下基础。讲授了线性空间和线性映射的概念,介绍了集合的笛卡尔积和映射的记号。00:00矩阵分析课程介绍:这个视频是关于矩阵分析课程的介绍。讲师强调了矩阵
- 【线性代数与矩阵论】Jordan型矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习线性控制系统Jordan型矩阵
Jordan型矩阵2023年11月3日#algebra文章目录Jordan型矩阵1.代数重数与几何重数2.Jordan块与Jordan标准型2.1最小多项式与Jordan标准型2.2两类重要矩阵3.矩阵的Jordan分解3.1Jordan分解的应用下链1.代数重数与几何重数在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被
- 实对称矩阵的特征值求法_正交矩阵学习小结
weixin_39548193
实对称矩阵的特征值求法已知协方差矩阵求特征值矩阵转置相关公式
整理一下矩阵论学习中的相关概念。从正交矩阵开始正交矩阵定义1称n阶方阵A是正交矩阵,若正交矩阵有几个重要性质:A的逆等于A的转置,即A的行列式为±1,即A的行(列)向量组为n维单位正交向量组上述3个性质可以看做是正交矩阵的判定准则,我们可以通过上述准则简单地判断一个矩阵是否是正交矩阵。下面,我们将从线性变换的角度,来看正交矩阵还有哪些独特的性质。首先给出正交变换的定义:定义2欧氏空间V的线性变换T
- 机器学习算法工程师
prolrj2015
算法
职位要求1、扎实的数学功底和分析技能,精通计算机视觉中的数学方法;高等数学(微积分)、线性代数(矩阵论)、随机过程、概率论、摄影几何、模型估计、数理统计、张量代数、数据挖掘、数值分析等;2、具备模式识别、图像处理、机器视觉、信号处理和人工智能等基础知识;对图像特征、机器学习有深刻认识与理解;3、精通图像处理基本概念和常用算法包括图像预处理算法和高级处理算法;常见的图像处理算法,包括增强、分割、复原
- 【矩阵论】Chapter 4—特征值和特征向量知识点总结复习
unique_pursuit
课程矩阵线性代数
文章目录1特征值和特征向量2对角化3Schur定理和正规矩阵1特征值和特征向量定义设σ\sigmaσ为数域FFF上线性空间VVV上的一个线性变换,一个非零向量v∈Vv\inVv∈V,如果存在一个λ∈F\lambda\inFλ∈F使得σ(v)=λv\sigma(v)=\lambdavσ(v)=λv,则λ\lambdaλ称为σ\sigmaσ的特征值。σ\sigmaσ的特征值的集合称为σ\sigmaσ的
- 【矩阵论】Chapter 2—内积空间知识点总结复习
unique_pursuit
课程矩阵线性代数机器学习
文章目录内积空间1内积空间2标准正交向量集3Gram-Schmidt正交化方法4正交子空间5最小二乘问题6正交矩阵和酉矩阵内积空间1内积空间内积空间定义设VVV是在数域FFF上的向量空间,则VVV到FFF的一个代数运算记为(α,β)(\alpha,\beta)(α,β)。如果(α,β)(\alpha,\beta)(α,β)满足以下条件:(α,β)=(β,α)‾(\alpha,\beta)=\ove
- 雷达算法相关技术栈
奔袭的算法工程师
算法
作为一名雷达算法工程师,总结一下相关的技术栈。一、数学基础信号与系统、数字信号处理、概率论与数理统计、随机信号分析、随机过程、矩阵论二、雷达算法1.雷达基本原理(测距、测速、测角)2.波形设计对雷达测量的影响3.距离模糊、速度模糊、角度模糊产生的原因和解决办法4.调频连续波的测距、测速、测角原理(多维FFT累加)5.波束形成和滤波器设计,以及对于波束的影响6.检测门限、概率与奈-皮尔逊准则7.不同
- 《矩阵论》学习笔记(一):第一章 线性空间与线性变换
熊宝宝爱学习
数学线性代数矩阵
《矩阵论》学习笔记:第一章线性空间与线性变换文章目录《矩阵论》学习笔记:第一章线性空间与线性变换一、线性空间1.1线性空间1.2线性变换及其矩阵1.2.1线性变换及其应用1.2.2线性变换的矩阵表示1.2.3特征值和特征向量1.2.4对角矩阵1.2.6jordan标准型1.3两个特殊的线性空间1.3.1欧氏空间1.3.2酉空间二、线性变换及其性质第一章线性空间与线性变换一.线性空间二.线性变换及其
- 《矩阵理论》笔记 1 — 线性空间与线性变换
frozendure
矩阵理论矩阵线性代数学习
矩阵论-线性空间与线性变换文章目录矩阵论-线性空间与线性变换一、线性空间1、线性空间1.1向量空间1.2线性空间1.3线性空间典型例子2、线性空间的基和维数2.1线性组合2.2线性相关与线性无关2.3基和维数2.4坐标3.基变换和坐标变换4.线性空间的同构4.1等价关系4.2性质二、线性子空间1、线性子空间2、维数公式3、子空间的直和三、线性变换1、映射2、线性变换3、线性变换的运算3.1线性变换
- 【矩阵论】矩阵的相似标准型(3)
kodoshinichi
数学#矩阵论线性代数矩阵论对角化线性变换
矩阵的相似标准型之“可对角化的条件”本节主要围绕着矩阵(或线性变换)能否进行对角化以及如何进行对角化进行讨论。【对角化的判断】矩阵的对角化:对给定的矩阵,判断能否相似于对角阵线性变换的对角化:对给定的线性空间上的线性变换,判断是否存在空间的一组基,使得其矩阵是对角阵。前面有关线性变换、线性空间和矩阵讨论了那么多,我们已经可以在矩阵和线性变换之间建立一个对应关系了,因此矩阵的对角化问题和相似变换的对
- 人工智能中的线性代数与矩阵论学习秘诀之知识体系
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
很多人学完线性代数、矩阵论两门课程后,完全不知道自己学了些什么,也不知道学这两门课程有什么用,心中满是疑惑。首先线性代数和矩阵论属于代数学范畴,既然如此,让我们先回忆一下从小学到高中是如何学习代数的。以实数为例,先了解什么是实数,然后学习实数的基本运算,接下来将多个实数打包在一起构成集合并研究不同集合的性质和变换。现在将实数换成向量,按照类似的步骤走一遍这个流程,我们将得到:“先了解什么是向量,然
- 【线性代数与矩阵论】坐标变换与相似矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习
坐标变换与相似矩阵2023年11月4日#algebra文章目录坐标变换与相似矩阵1.基变换与坐标变换2.相似变换下链1.基变换与坐标变换坐标变换与基变换都要通过过渡矩阵AAA来实现。设有一向量f⃗\vecff,xxx是在基α\alphaα下该向量的坐标,yyy是在新基β\betaβ下该向量的坐标,则基变换为:β=αA , A=α−1β\beta=\alphaA\,\,,\,\,A=\alpha
- 矩阵论(零):线性代数基础知识整理(2)——矩阵的秩与向量组的秩
exp(i)
机器学习的数学基础线性代数矩阵论机器学习
矩阵论专栏:专栏(文章按照顺序排序)本篇博客承接上篇矩阵论(零):线性代数基础知识整理(1)——逆矩阵、初等变换、满秩分解,主要整理秩相关的结论。线性方程组的解与向量组的秩线性方程组的解(初步讨论)向量组的秩线性方程组的解(进一步讨论)零矩阵的判定定理关于秩的重要结论(结合向量组的秩、分块矩阵的秩的方法进行总结)矩阵的秩与向量组的秩的关系常用矩阵秩相关的等式和不等式公式1:∣r(A)−r(B)∣⩽
- 矩阵论(零):线性代数基础知识整理(5)——特征值与相似
exp(i)
机器学习的数学基础线性代数矩阵
矩阵论专栏:专栏(文章按照顺序排序)本篇博客的上篇是矩阵论(零):线性代数基础知识整理(4)——线性空间与线性变换,梳理了线性空间与线性变换的相关内容。本文主要整理矩阵的特征值与相似的相关内容。方阵的特征值特征值的定义及性质特殊矩阵的特征值与特征向量(对角矩阵、上(下)三角矩阵、酋矩阵、分块矩阵)AAA、ATA^TAT、AHA^HAH的特征值的关系AHAA^HAAHA和AAHAA^HAAH的特征值
- [矩阵论] Unit 6. 矩阵的 Kronecker 积与 Hadamard 积 - 知识点整理
PeakCrosser
矩阵论矩阵线性代数
注:以下内容均由个人整理,不保证完全准确,如有纰漏,欢迎交流讨论参考:杨明,刘先忠.矩阵论(第二版)[M].武汉:华中科技大学出版社,20056矩阵的Kronecker积与Hadamard积6.1Kronecker积与Hadamard积的定义K-积和H-积定义K-积:Am×n⊗Bs×t=[aijB]ms×nt=[a11B⋯a1nBa21B⋯a2nB⋯⋯⋯am1B⋯amnB]A_{m\timesn}
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出