- 最小生成树个数
兔猪猪兔
矩阵算法矩阵树最小生成树计数
今天练习最小生成树时做到这样一个题1150.最小生成树计数-AcWing题库一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明--洛谷博客,我们只取其中的结论部分首先,定义一些东西对于无向图,定义D(G)为图G的度数矩阵,其中:(deg是度数的意思)定义A(G)为图G的邻接矩阵,其中:t
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 【学习笔记】[ABC323G] Inversion of Tree
仰望星空的蚂蚁
线性代数学习笔记
前置知识:矩阵树定理,特征多项式省流:板子缝合题。可以复习一下线性代数的基本知识。定义Pu>PvP_u>P_vPu>Pv的边价值为xxx,Pun>n>n就寄了。因为都是板子,所以建议多看一下代码。注意行和列都要进行操作。复杂度O(n3)O(n^3)O(n3)。#include#definelllonglong#definepbpush_back#definefifirst#defineseseco
- 矩阵树定理
_fairyland
图论算法
构造一个拉普拉斯矩阵:对于边(u,v)(u,v)(u,v),矩阵a[u][u]a[u][u]a[u][u]++,a[v][v]a[v][v]a[v][v]++,a[u][v]a[u][v]a[u][v]–,a[v][u]a[v][u]a[v][u]–,去掉最后一行最后一列,求行列式(取模用辗转相除),即图的生成树个数矩阵树求的是:∑T∏e∈Tpe\sum_T\prod_{e\inT}p_e∑T∏e
- 矩阵树定理||高斯消元求行列式
Yjmstr
学习笔记矩阵树定理
参考链接-博客园参考链接-oiwiki定理部分并没有什么原创内容,全是阅读上面两篇文章做的笔记。矩阵树定理KirchhoffKirchhoffKirchhoff矩阵树定理(简称矩阵树定理)解决了一张图的生成树个数计数问题。矩阵树定理有很多形式,以下内容是一些声明。应用矩阵树定理的图允许重边,但是不允许自环。以下内容是照抄oiwiki的无向图情况:设GGG是一个有nnn个顶点的无向图。定义度数矩阵D
- 矩阵树定理复习与简要证明
EasternCountry
基础算法算法
矩阵树定理用处计算无向图的生成树个数。命题&简要证明矩阵树定理:给定一个有n个点的图G的邻接矩阵A和度数矩阵B(就是B[i][i]B[i][i]B[i][i]表示i这个点的出度,其他位置均为0),记S为G的生成树个数。设T为B-A,记T划去第k行和第k列的矩阵为P(1y,则意味着一定不会有p[y]=y,所以y也一定会有一条出边,最终一定会形成一个环。有环非简单环就意味着有一个点至少有两个出边,这个
- NOI2021信息竞赛学习笔记
andyc_03
线性代数图论算法
一.图论1.仙人掌问题(圆方树)2.矩阵树定理3.网络流4.基环树二、数据结构1.线段树2.左偏树3.树链剖分4.主席树5.树套树6.长链剖分7.LCT三、数学1.欧拉函数|(扩展)欧拉定理|欧拉反演2.线性筛3.莫比乌斯反演4.FFT&NTT5.生成函数6.多项式全家桶7.单位根反演8.FWT9.拉格朗日插值10.线性基11.burnside&polya四、字符串1.后缀数组2.后缀自动机3.序
- 【模拟赛】星际联邦 federation (矩阵树定理,线性代数,循环行列式)
DD(XYX)
数学图论C++算法线性代数矩阵树定理行列式
题面题解如果我们把这个www定义为某一种距离的follow可连的边数,那么就很清楚了:对于所有1≤i,j≤n1\leqi,j\leqn1≤i,j≤n,iii向jjj连有wi−j+nmod nw_{i-j+n\modn}wi−j+nmodn条有向边,而每个点向0号点连有1条有向边。求以0为根的内向生成树个数。直接上矩阵树定理,由于最终求余子式,干脆就忽略0号点,那么答案就是det[1+∑w−w1
- 生成树计数 --- Matrix-Tree定理(基尔霍夫矩阵树定理)
Anxdada
定理证明请点这,多看几遍就懂了模板题点这题目大意:*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;*需要有选择的修建一些高速公路,从而组成一个交通网络;*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;模板:#include#include#include#include#include#definelllonglongusingnamespacestd;co
- 【bzoj4031】 HEOI2015小Z的房间 矩阵树定理
qingdaobaibai
线性代数图论
第一次做矩阵树定理的题,其实就是记了个结论也没太看证明,然后学了学怎么用高斯消元求行列式,整数消元还真别扭,要用辗转相除,然后要注意取模的问题,一开始以为hzwer写麻烦了,后来想了想不加外面那句话会有问题,因为取模了。#include#include#include#include#include#include#definemod1000000000usingnamespacestd;intd
- [矩阵树定理][HEOI2015]小Z的房间
romiqi_new
矩阵树定理
传送门矩阵树定理:一张图的基尔霍夫矩阵即为其度数矩阵-邻接矩阵,度数矩阵中D[i][i]D[i][i]D[i][i]为点i的度一张图的生成树个数即为其基尔霍夫矩阵的行列式Code:#include#defineintlonglong#defineN90#definemod1000000000usingnamespacestd;intn,m,f[N][N];inttot,Map[N][N];void
- bzoj4031: [HEOI2015]小Z的房间
OI界第一麻瓜
矩阵树定理
题目大意就是生成树计数问题题解矩阵树定理题表和定理大意CODE:#include#include#include#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9;constLLN=105;LLn,m;LLidx[N][N],id=0;charss[N][N];LLd[N][N],a[N][N];LLc[N][N];//度数是否有边
- [BZOJ4031][HEOI2015]小Z的房间(矩阵树定理+高斯消元)
FromATP
BZOJ高斯消元消来消去
======这里放传送门======题解没错这就是个裸题矩阵树定理:定义一个图的基尔霍夫矩阵为:A[i][j]=⎧⎩⎨d[i],−1,i=ji≠j其中d[i]表示点i的度。对于无向图来说,这个矩阵的任何一个n-1阶主子式的行列式的值就是这个图的不同生成树个数。其中n-1阶主子式表示在矩阵中任意去掉标号相同的一行和一列以后剩下的子矩阵但是这题模数实在是太!恶!心!了!!!ATP尝试了N多种方法包括什
- BZOJ4031 [HEOI2015]小Z的房间
dogeding
矩阵树懵逼了半天终于AC
传送门题解:因为持续写题感到恶心又不想显得太颓于是随便存几个板子求生成树方案数?矩阵树定理板子题。这就当我存个板子的地方吧。总之就是对于边(i,j),矩阵a[i][j]值-1,a[i][i]值+1。然后求个行列式即可。代码:#include#include#definemaxn105#definemod1000000000usingnamespacestd;intn,m,d[5]={0,1,0,-
- CF917D Stranger Trees
hanyuweining
题解————线性代数————拉格朗日插值矩阵树定理
传送门非常舒适的一道题趁机学了一发拉格朗日插值2333貌似是WC2018讲的题我们对于在原图中存在的边记为x没出现的边记为1然后矩阵树定理求出行列式对应的x^k的系数就是跟原图有k条重边的方案数显然带多项式进去不好算那么我们拉格朗日插值对于x分别算1-n得到了n个值然后插值回来就可以了拉格朗日求系数我也没有找到好的博客于是找到学长求助结果他们说的我很懵逼【大概是我菜的真实于是自己YY了一个拉格朗日
- [矩阵树定理][prufer序][CF917D]Stranger Trees
ZLTJohn
DP图论杂题计数类问题线性基及其他线性代数相关数论杂知识点
题目描述给定一棵n个点组成的有标号的树T,我们定义两棵有标号的树的相似度为它们共有的边的个数。现在我们想知道,n个点的完全图所有的有标号的生成树中,有多少棵树与T的相似度为0,1,2…n-1,答案对10^9+7取模对于20%的数据,n#include#include#include#include#includeusingnamespacestd;typedeflonglongll;typedef
- [SP104 HIGH]Highways [HEOI2015]小Z的房间——矩阵树定理入门
ylsoi
高斯消元矩阵树定理
矩阵树定理:用于计算无向连通图的生成树个数。计算出整张图的度数矩阵D(即Di,iD_{i,i}Di,i表示i的度数),和邻接矩阵A(即Ai,jA_{i,j}Ai,j表示i和j的连边的数量),然后得到基尔霍夫矩阵(D-A),计算新矩阵的任意n-1阶主子式的绝对值即可。计算行列式的值:行列式的值直接计算复杂度太高,于是我们利用类似于高斯消元的方法将行列式消成一个上三角矩阵,不难得出此时除了主对角线之外
- 生成树计数问题——矩阵树定理及其证明
WerKeyTom_FTD
杂文矩阵树定理
生成树计数问题给一副n个节点的无向图G,求一个包含n-1条边的边集使得边集的边构成一颗树,问这样的边集的数量。矩阵树定理以下我们都不对重边与自环进行讨论。实际上,即使有重边矩阵树定理仍然是正确的。先定义度数矩阵D,是一个n*n的矩阵。Di,i=节点i的度数,对于i不等于j,Di,j=0。再定义邻接矩阵A,也是一个n*n的矩阵。i与j有边相连就有Ai,j=1否则Ai,j=0。最后定义基尔霍夫矩阵C=
- [洛谷P4111][HEOI2015]小Z的房间
weixin_34255793
题目大意:有一个$n\timesm$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通题解:矩阵树定理,把房间当点,墙当边,一张图的生成树个数为每个点的度数矩阵减去邻接矩阵的任意一个代数余子式的值。模数是$10^9$,不可以直接高斯消元,可以用辗转相除法来消元卡点:无C++Code:#include#include#in
- [HEOI2015]小Z的房间(矩阵树定理学习笔记)
weixin_34304013
题目描述你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希
- 洛谷 P3317 [SDOI2014]重建(矩阵树定理+数学推导) [bzoj3534]
weixin_34409822
传送门首先,大家应该都能看出来这是矩阵树定理,然后大部分人应该就会把概率直接带进去算,然后就愉快地WA掉了(我当时就是这么想的,幸亏没交)然后就来讲这个题的正解思路。首先我们来看答案应该是怎样的:ans=∑Tree∏(u,v)∈EP(u,v)∏(u,v)∉E(1−P(u,v))然后我们来想一下怎么来构造这个答案:首先,我们直接矩阵树用高斯算出来的结果应该是这个:now=∑Tree∏(u,v)∈EP
- 矩阵树定理及变元矩阵树定理
weixin_30677073
变元矩阵树定理:定义Kirchhoff矩阵\(K\),其中\(K_{ii}\)为所有与\(i\)相连的边的权值和\(K_{ij}\)为连接\(i\)与\(j\)的边权值和的负值那么\(\sum\limits_{tree\inT}\prod\limits_{E\intree}val(E)\),\(T\)为生成树集合,就是生成树的边积的和然后矩阵树定理就是把\(K_{ii}\)定义为\(i\)的度数\
- 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理模板
愤怒的愣头青
矩阵树定理学习资料
Description你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通
- [BEST定理 矩阵树定理] BZOJ 3659 Which Dreamed It
里阿奴摩西
Matrix-Tree定理图论
BESTtheorem一个证明?注意区分下题目中要求的“欧拉回路”的条数和定理中欧拉回路的条数欧拉回路是个回路所以存在循环同构题中要求起点是1实际上还要乘上1的度数因为从1的任一边出发在题中都算作一种不同方案#include#include#includeusingnamespacestd;typedeflonglongll;constintN=105;constintP=1000003;intn
- 【BZOJ】【P3534】【Sdoi2014】【重建】【题解】【矩阵树定理】
iamzky
OI
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3534dt学了矩阵树定理邻接矩阵中的的权可以不是1,而是其他权值,比如概率这样计算出来的就是所有生成树的概率和,即但是这样不对……生成一颗生成树T的概率应该是接着就是神奇的转换设G要求的矩阵,P是给出的矩阵我们令对G计算n-1阶主子式,即有那么把它乘上tmp答案就这么出来了!!!!当P=1时处
- [矩阵树定理][SDOI2014]重建
romiqi_new
矩阵树定理
BZOJ3534裸的矩阵树就不用说了吧只不过是一个简单的变元矩阵树,把概率放进去就行了Code:#include#definedbdouble#defineeps1e-7usingnamespacestd;inlineintread(){intres=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}w
- BZOJ3534: [Sdoi2014]重建【变元矩阵树定理】
XSamsara
BZOJ矩阵树定理
3534:[Sdoi2014]重建变元矩阵树定理邻接矩阵中是可以带权的,wijwijwij表示i,ji,ji,j的边权,eieiei表示边。定义G(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wij,令G(i,i)=−∑j≠iG(i,j)G(i,i)=−∑_{j≠i}G(i,j)G(i,i)=−∑j̸=iG(i,j)那么n−1n−1n−1阶主子式的值
- 【BZOJ4894】天赋
cz_xuyixuan
【OJ】BZOJ【类型】做题记录
【题目链接】点击打开链接【思路要点】矩阵树定理同样可以计算有向图某个点的外向生成树的个数。具体方法就是认为度数为每个点的入度,删除一号点(树根)所在的行列,然后求行列式。时间复杂度O(N3)O(N3)。【代码】#includeusingnamespacestd;constintMAXN=305;constintP=1e9+7;templatevoidchkmax(T&x,Ty){x=max(x,y
- bzoj 4639 期望 矩阵树定理
SFN1036
矩阵树定理
题意有一个n个点m条边的图,每条边有长度和美丽值。求该图的所有最小生成树中美丽值的和的期望。满足长度相同的边的数量不超过30。n≤10000,m≤200000n\le10000,m\le200000n≤10000,m≤200000分析显然长度不同的边的贡献是独立的。那么我们可以把每一种距离的边拿出来,对每一个连通块分别处理。枚举同一个连通块中的每一条边,用矩阵树定理算出一定包含这条边的最小生成树的
- 【SPOJ】Highways(矩阵树定理)
小蒟蒻yyb
题面Vjudge洛谷题解矩阵树定理模板题无向图的矩阵树定理:对于一条边(u,v),给邻接矩阵上G[u][v],G[v][u]加一对于一条边(u,v),给度数矩阵上D[u][u],D[v][v]加一定义霍尔基夫矩阵C=D−G将基尔霍夫矩阵去除任意一行和任意一列之后,得到一个(n−1)∗(n−1)的行列式C求解这个行列式的值,最后的|det(C)|就是结果#include#include#includ
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb