- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 近世代数理论基础7:同余式·中国剩余定理
溺于恐
同余式·中国剩余定理同余式定义:给定整系数多项式,则称同余方程为模m的同余式,若,则称它为n次同余式若,满足,则,b也满足,因而称为该同余式的一个同余解定理:一次同余式,有解,若有解,则有个同余解证明:中国剩余定理定理:设,且两两互素,则同余式组,模有唯一同余解证明:
- python实现中国剩余定理
含泪进厂
python
中国剩余定理又称孙子定理,是数论中一个重要定理。最早可见于我国的数学著作《孙子算经》卷下“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。把这题转化成现代数学问题:求一个数x,该数除以3余2,除以5余3,除以7余2把以上问题转化为一般方程的形式根据中国剩余定理解如下其中python代码实现n=i
- 孙子定理和“物不知数”问题
软件技术爱好者
数学广角随笔数学
孙子定理和“物不知数”问题孙子定理,也称为中国剩余定理或中国余数定理。孙子定理是中国古代求解一次同余式组(见同余)的方法。此定理,在公元5-6世纪的中国南北朝时期的数学家孙子提出的“物不知数”问题可以被视为中国剩余定理的一个应用实例。《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除
- 笔记---中国剩余定理
Die love 6-feet-under
笔记算法c++
全程学自y总AcWing.204.表达整数的奇怪方式给定2n2n2n个整数aaa1,aaa2,…,aaan和mmm1,mmm2,…,mmmn,求一个最小的非负整数xxx,满足∀i∈[1,n],x≡m∀i∈[1,n],x≡m∀i∈[1,n],x≡mi(moda(moda(modai)))。输入格式第1行包含整数nnn。第2…nnn+1行:每iii+1行包含两个整数aaai和mmmi,数之间用空格隔开
- ACM必备知识
Element-YoNg
时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排序,外部排序)数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理)指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示)按位运算(and,or,xor,sh
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- C++ 数论相关题目 表达整数的奇怪方式(中国剩余定理)
伏城无嗔
数论力扣算法笔记c++算法
给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(modai)。输入格式第1行包含整数n。第2…n+1行:每i+1行包含两个整数ai和mi,数之间用空格隔开。输出格式输出最小非负整数x,如果x不存在,则输出−1。数据范围1≤ai≤231−1,0≤mi#includeusingnamespacestd;typedeflonglongLL
- 【数学】一元一次同余方程组、中国剩余定理(CRT)与扩展中国剩余定理(exCRT)
OIer-zyh
数学#数论c++OI数学算法数论
一元一次同余方程组形如{x≡a1(modm1)x≡a2(modm2) ⋮x≡an(modmn)\begin{cases}x\equiva_1\pmod{m_1}\\x\equiva_2\pmod{m_2}\\\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\vdots\\x\equiva_n\pmod{m_n}\end{cases}⎩⎨⎧x≡a1(modm1
- Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
- 数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 基于格理论来破解RSA公钥密码(1)
唠嗑!
格密码密码学网络安全
目录一.介绍二.RSA密码系统2.1生成公私钥2.2加密2.3解密三.中国剩余定理攻击低指数的RSA3.1介绍3.2中国剩余定理四.基于多项式的RSA加密五.小结一.介绍我们生活中常使用的网络浏览器,智能卡片都有RSA公钥密码的影子。从1977年,RSA密码系统提出,五十年来涌现出了大量的攻击算法。Hastad和Coppersmith创新性的用格密码理论来攻击RSA系统,尤其是公开指数较小的时候。
- 中国剩余定理的同态性质(CRT变换的同态性)
咸鱼菲菲
数论基本算法抽象代数同态加密
1、中国剩余定理简介(ChineseRemainderTheory,CRT)中国剩余定理是关于求解一元线性同余方程组的方法,用形式化的描述就是:m1,m2,mnm_1,m_2,m_nm1,m2,mn是两两互素的n个整数,有下面的同余方程组:{x≡a1mod m1x≡a2mod m2...x≡anmod mn(m1,m2,⋯ ,mn)两两互素\left\{\begin{array}{lr}x\
- ACM板子
GGood_Name
cocoamacosobjective-cc++
文章目录板子:初始化:快读:快速幂:GCD/LCM:组合数:欧拉筛:大整数质因数分解:分解质因数:求(1e12)内质数:KMP:最小生成树:最短路LCA查找最近祖先二分图匹配RMQ区间最小值:01字典树:字典树:线段树:最长上升子序列:最长公共子序列:01背包中国剩余定理模板*L**u**c**a**s*定理。扩展Lucas定理hash+二分求最长回文串**尼姆博弈模型**莫队算法权值线段树回文树
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 算法-大数相乘
Aberwang9157
java算法java
解决算法;*1.模拟小学乘法:最简单的乘法竖式手算的累加型;*2.分治乘法:最简单的是Karatsuba乘法,一般化以后有Toom-Cook乘法;*3.快速傅里叶变换FFT:(为了避免精度问题,可以改用快速数论变换FNTT),时间复杂度O(NlgNlglgN)。具体可参照Schönhage–Strassenalgorithm;*4.中国剩余定理:把每个数分解到一些互素的模上,然后每个同余方程对应乘
- 任意模数FTT
YiPeng_Deng
学习小计FFT和NTTfft任意模数fft常数优化
模板题luogu42459次DFT由于在一般的条件下值域大概在102310^{23}1023下,所以找到三个NTT模数,它们的乘积大于102310^{23}1023,求出三个模数下的答案,再用中国剩余定理把它们合并到一起,变成模三个数的乘积下的答案,这就是它的实际答案。一共需要9次DFT,常数比较小,但是9次实在是太慢了。三次变两次由于复数域的神奇性质,我们在FFT的时候可以将计算C(x)=A(x
- 算法学习总结
joker D888
算法与数据结构算法c++ACM数据结构
算法总结文章目录算法总结搜索遍历dfs树的深度树的重心图的连通块划分bfs双端队列bfsbfs图问题迭代加深双向搜索A*IDA*Morris遍历Manacher数论质数判断质数分解质因数埃氏筛法线性筛法约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法欧拉函数快速幂快速幂求逆元扩展欧几里得算法斐蜀定理扩展欧几里得算法线性同余方程中国剩余定理卡特兰数低阶数据结构链表邻接表AVL树单调
- 算法基础之表达整数的奇怪方式
阳光男孩01
算法数据结构图论c++
表达整数的奇怪方式中国剩余定理:求M=所有m之积然后Mi=M/mix=如下图满足要求扩展中国剩余定理找到x**使得xmodmi=ai**成立对于每两个式子都可以推出①式即用扩展欧几里得算法可以算出k1,-k2和m2–m1判无解:若**(m2–m1)%d!=0**说明该等式无解即原方程无解本题无解找到最小正整数解已知k1的通式(如下图代入原方程可证成立)则求最小正整数解只要%abs(a2/d)等效替
- 中国剩余定理CRT
2301_78981471
算法学习记录笔记算法
文章目录作用证明AcWing204.表达整数的奇怪方式CODE作用用于求模数两两互质的线性同余方程组,若不互质则不存在解。《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?这就是经典的剩余定理问题,也是我们小学题目:三个三个数余二,五个五个数余三,七个七个数余二,求这个数是几?{x≡2(mod3)x≡3(mod5)x≡2(mod7)\left\{\
- 算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
- AcWing-算法基础课总结
147qq.com
acm竞赛算法
本文是基于AcWing网站算法基础课刷题的一个总结第六讲贪心贪心第五讲动态规划背包问题各种类型的DP第四讲数学知识质数约数欧拉函数快速幂扩展欧几里得中国剩余定理高斯消元求组合数容斥原理博弈论第三讲搜索与图论DFS与BFS最短路—dijkstra(朴素做法和堆优化)拓扑排序Bellman_ford------有边数限制的最短路spfa------求最短路,判断是否有负环Floyd(多源最短路)最小生
- AcWing的算法基础课目录
greedy-hat
刷题mysql学习springboot
文章目录基础算法数据结构搜索与图论数学知识动态规划贪心时空复杂度分析基础算法排序二分高精度前缀和与差分双指针算法位运算离散化区间合并数据结构链表与邻接表:树与图的存储栈与队列:单调队列、单调栈kmpTrie并查集堆Hash表搜索与图论DFS与BFS树与图的遍历:拓扑排序最短路最小生成树二分图:染色法、匈牙利算法数学知识质数约数欧拉函数快速幂扩展欧几里得算法中国剩余定理高斯消元组合计数容斥原理简单博
- 使用中国剩余定理CRT对RSA运算进行加速
詹天佐
密码智能卡程序员RSA密码学加密算法数论
这篇讲一下如何使用中国剩余定理CRT来对RSA加密运算进行加速。RSA运算当我们使用RSA私钥(n,d)对密文c进行解密(或者计算数字签名时),我们需要计算模幂m=cdmodnm=c^dmod\nm=cdmodn。私钥指数ddd并不像公钥指数eee那样方便。一个k比特的模n,对应的私钥指数d差不多跟它一样长。计算的工作量同长度k成正比,所以对于RSA私钥的运算,有更多的计算量。我们可以使用CRT模
- rsa-crt算法高效率,多注释尽可能精简的c语言实现代码
芥子纳须弥1116
算法c语言开发语言
RSA-CRT(RSAChineseRemainderTheorem)是一种用于加速RSA解密的算法。由于RSA的解密过程涉及大数的幂运算,计算量很大,因此RSA-CRT算法通过利用中国剩余定理的性质来减少计算量,从而提高解密效率。下面是一份用C语言实现的RSA-CRT算法的代码,注释尽量精简:```c#include#include#include#include//定义结构体存储RSA密钥信息
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟