- matlab cdf,Matlab 简单计算PDF和CDF | 学步园
苏晓晓
matlabcdf
通信的魅力就是在于随机性中蕴含的确定性,这也就是为什么你随便拿出一本通信方面的教材,前面几章都会大篇幅的讲解随机过程,随机过程也是研究生必须深入了解的一门课,特别是对于信号处理以及通信专业的学生。在实际工作中,通常会得到很多随机的数,我们要分析它们的分布,最常见的就是用PDF和CDF来描述了。好了,还是举出一个具体例子吧。那么实际中我们要验证是不是符合这样的分布,首先看代码再解释:%%%%%%%%
- 随机过程【张颢】第一章
模拟IC和AI的Learner
随机过程机器学习人工智能
学习目标随机过程主要研究多个随机变量之间的联系。主要分为两个大类:一,线性相关对线性相关的研究主要从以下方面:(1)从时域角度(2)从频域角度主要研究一个重要的过程:(3)高斯过程二,马尔可夫性主要学习:(1)离散时间的马尔可夫链(2)连续时间的马尔可夫链还会学习一个典型的过程(最简单、应用最广泛的马尔可夫过程):(3)泊松过程三,鞅(研究较少,主要用在金融方面)
- 随机信号是什么,随机信号的分类
cxylay
声音信号随机信号分类白噪声高斯非平稳
随机信号(RandomSignal)是指在时间或空间上,信号的取值是不可预测的,或者说是由随机过程所生成的信号。随机信号广泛存在于自然界中,例如大气噪声、电磁干扰、地震波等都可以被视为随机信号。随机信号的特点:①不可预测性:随机信号的未来取值无法通过确定性规律准确预测,只能通过统计特性来描述和估计。②统计特性描述:由于随机信号的瞬时值难以预测,因此我们通常通过统计特性,如均值、方差、自相关函数、功
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 【Stable Diffusion】:原理、应用与未来展望
Python小原
stablediffusion人工智能深度学习
一、引言在人工智能的快速发展中,StableDiffusion作为一种先进的随机过程模型,受到了广泛的关注。StableDiffusion不仅能够描述许多自然和人工系统中的随机演化行为,而且在多个领域展现出了广泛的应用潜力。本文将详细介绍StableDiffusion的原理、应用以及未来的发展趋势。二、StableDiffusion的原理StableDiffusion可以被定义为一个基于随机漫步的
- 随机过程及应用学习笔记(三)几种重要的随机过程
苦瓜汤补钙
学习笔记
介绍独立过程和独立增量过程。重点介绍两种独立增量过程-—维纳过程和泊松过程。目录前言一、独立过程和独立增量过程1、独立过程(IndependentProcess)2、独立增量过程(IndependentIncrementProcess)二、正态过程(高斯过程)1、正态过程的定义编辑2、正态过程的概率分布三、维纳过程(Brown运动)1、定义2、概率分布及数学特征3、性质四、泊松过程1、定义2、概率
- MATLAB实现几何布朗运动(模拟股价走势)
MATLAB代码顾问
matlab开发语言
问题描述:几何布朗运动(GeometricBrownianMotion,GBM)是一种常常用于模拟股票价格或汇率等金融资产价格的随机过程。MATLAB代码:clearall;clc;closeall;%设置参数T=1;%时间总长N=1000;%时间步数dt=T/N;%时间步长mu=0.1;%均值sigma=0.2;%标准差S0=100;%初始价格%初始化向量S=zeros(1,N);%价格t=ze
- 指数随机变量 泊松过程跳_随机过程学习笔记(1):指数分布与泊松过程
姐姐妹妹向前冲
指数随机变量泊松过程跳
笔记主要基于中文版《应用随机过程IntroductiontoProbabilityModels》(SheldonM.Ross),只有非常少的一部分是我自己的注解。写这个笔记的目的是自己复习用,阅读需要一定的微积分和概率论基础。本人为初学者,且全部为自学,如果笔记中有错误,欢迎指正。提示:概率论和指数分布作为本节的基础,我把一些重要公式写在开头,但是可以直接从泊松过程开始阅读,在泊松过程中用到相关知
- 应用随机过程期中复习总结
ldc1513
课程复习资料数学概率论应用随机过程马氏链常返
应用随机过程期中复习总结byldc前言:该笔记为北京大学数学科学学院应用随机过程课程的复习笔记和内容总结。主要参考课程讲义编写而成。该复习笔记截止期中,主要介绍了马氏链的概念,并且非常详细地讲解了时齐马氏链的各个性质。由于是总结性质的笔记,因此该总结中的结论不加证明地给出,如果需要查询证明的话可以参考以下两本书,也可以自行谷歌:英文:《MarkovChain》,Norris中文:《应用随机过程》,
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 随机过程及应用学习笔记(二)随机过程的基本概念
苦瓜汤补钙
学习笔记
随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。目录前言一、随机过程的定义及分类1、定义2、分类二、随机过程的分布及其数字特征1、分布函数2、数字特征均值函数和方差函数协方差函数和相关函数3、互协方差函数与互相关函数三、复随机过程总结前言随机过程理论产生于本世纪初,起源于统计物理学领域。布朗运动和热噪声是随机过程的最早例子。随机过程理论在社会科学、自然科学和工程技术的各个
- 随机过程及应用学习笔记(一)概率论(概要)
苦瓜汤补钙
学习笔记
概率是随机的基础,在【概率论(概要)】这个部分中仅记录学习随机过程及应用的基本定义和结果。前言首先,概率论研究的基础是概率空间。概率空间由一个样本空间和一个概率测度组成,样本空间包含了所有可能的结果,而概率测度则描述了每个结果发生的可能性大小。研究者通过定义适当的概率测度,可以更准确地描述各种随机现象的发生概率。一、概率空间(Ω,F,P)Samplespace样本空间:随机试验的所有可能结果构成的
- Smart seq2 2014
韧_7e6f
题目:Full-lengthRNA-seqfromsinglecellsusingSmart-seq2期刊:NatProtoc.通讯作者:RickardSandberg1.背景越来越明显的是,由于内在的随机过程和外部因素(如周围的微环境),体内或体外细胞培养中看似均匀的细胞群在表达模式上可以显示出相当大的异质性。需要单细胞分辨率来增加我们对细胞间变异性的理解。我们的团队最近证明了Smart-seq
- 问题汇总20240206——角度随机游走、字符与字节、SWaP、跨平台通讯问题、#park
老王WHH
问题汇总经验分享学习笔记嵌入式硬件
文章目录角度随机游走字符与字节SWaP跨平台通讯过程中必须考虑以下问题:#park指令角度随机游走1.角度随时间变化是随机过程,即角度在时间上的随机漂移降低:温度稳定、校准、误差补偿、数据滤波(卡尔曼)降低环境因素带来的干扰,例如振动或噪声。但总的来说不可能完全消除。字符与字节字符:字母、数字、文本、标点等。不同的标准下的字符与字节的换算是不同的:ASCII、UTF-8:1字符=1字节=8bits
- 通信基础 4——遍历容量、信道估计、干扰对齐
今天也努力学习的Paul
物理层安全
目录遍历容量/各态历经性容量信道估计干扰对齐无线携能通信遍历容量/各态历经性容量说遍历容量不十分准确,应该叫各态历经性容量(是相对于中断容量说的)首先要理解《信息论》中得香农信道容量,然后结合《随机过程》这门课的内容来理解。通常我们所说的香农容量是在确定性信道条件下得到的信道容量,是一个确定值。但实际上,信道状态是一个不断变化的随机过程,应该采用统计意义上的信道容量来描述。有两种统计意义上的描述方
- 做研究系列:如何研究量子科学
科学禅道
Research:做研究系列量子计算
研究量子科学通常需要经过系统的学术训练和实践探索,以下是入门和深入研究量子科学的一般步骤:基础知识学习:学习物理学基础,包括经典力学、电磁学、热力学与统计物理等。掌握数学工具,如线性代数、微积分、泛函分析、复变函数论以及概率论与随机过程等,这些是理解和构建量子理论模型的基础。量子力学入门:从基本的量子力学原理开始,如波粒二象性、薛定谔方程、不确定性原理、态叠加原理和测量问题等。阅读经典的教材,例如
- 【深度学习】马尔科夫链
weixin_40293999
深度学习深度学习人工智能
马尔科夫链一、常见的马尔可夫过程:(1)独立随机过程为马尔可夫过程。(2)独立增量过程为马尔可夫过程:没{X(t),t∈[0,+∞)}为一独立增量过程,且有P(X(0)=x0)=1,x0为常数,则X(t)为马尔可夫过程。(3)泊松过程为马尔可夫过程。(4)维纳过程为马尔可夫过程。(5)质点随机游动过程为马尔可夫过程。二、模型的创立条件importnumpyasnpdefmarkov():init_
- 泊松过程介绍
White__River
随机过程人工智能
泊松过程根据海上终端通信需求分布在时间和空间上的不均匀性,可以用泊松过程模拟这一过程.以下是泊松过程相关的理论知识.1.计数过程如果随机过程N(t)代表系统(从某一开始时刻)到t时刻这段时间内发生某个事件的次数,就称之为计数过程.根据其定义,计数过程的性质有:N(t)>=0N(t)的值是整数若s=0,有P{N(h+s)−N(s)=n}=e−λh(λh)nn!,n=0,1,...P\{N(h+s)-
- MUSIC算法原理与信号DOA估计
LiuXiaoli0720
算法线性代数矩阵信号处理
一、平稳随机过程的自相关矩阵及其性质1.1自相关矩阵的定义对离散时间平稳随即构成,用MMM个时刻的随机变量u(n),u(n−1),...,u(n−M+1)u(n),u(n-1),...,u(n-M+1)u(n),u(n−1),...,u(n−M+1)构造随机向量u(n)=[u(n),u(n−1),...,u(n−M+1)]Tu(n)=[u(n),u(n-1),...,u(n-M+1)]^{T}u(
- 专业140+总分420+复旦大学957信号与系统考研经验复旦电子信息与通信
一个通信老学姐
博睿泽信息通信考研论坛博睿泽信息通信考研考研信息与通信信号处理经验分享
今年专业957信号与系统140+,数二140+,总分420+,顺利上岸复旦大学,回顾这一年的复习,有起有落,也有过犹豫和放弃,好在都坚持下来了,希望大家考研复习要不忘初心,困难肯定是很多的,要坚持到底,不要怀疑自己,或者总觉得时间不够,想着二战。给自己松懈的理由。希望我的复习经验可以对大家复习有所帮助。专业课:957信号与系统(包含随机过程),复旦以前专业课考试内容较多,2022开始改为信号与系统
- BUPT果园物联大二下不完全回忆
本小爷世界第一花式帅
BUPT果园课程回忆录经验分享
随便写写,随写随更,主要我对不同课程的记忆点(主要是专业课)北邮国院物联网工程专业大二下学期课程记录I.必修课:1.数字电路与逻辑设计2.Java高级语言程序设计3.数据库4.概率论与随机过程5.产品开发与管理6.Design&Build实训37.学术交流技能28.MAOGAI9.MAOGAI(实践环节)10.XINGZHENG411.个人发展计划IIII.选修课:1.人文与医学(在线课程)2.区
- 2019-11-07
LiuLiuLu
随机过程的学习已经接近尾声了。我觉得该写点什么记录一下了。最初决定学习随机过程的原因是多方面的。一方面是想在信号处理这个方向深耕,随机过程是处理随机信号最重要的数学工具,想深入学习统计信号处理必须学习随机过程。另一方面,随机数学本身便充满了魅力。我选取的教材是中科大出版社出版的《随机过程引论》。坦白说,这不是一本好教材。不过和其他中科大出版的教材类似,它非常注重数学基础。该书的第一章以测度论为基础
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 深度CV基础——图像噪声和滤波
徐kun按门铃
智能车笔记python深度学习opencv机器学习
一,图像噪声1.图像噪声的概念:图像噪声是图像在获取或是传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理的信号。很多时候将图像噪声看做多维随机过程,因而描述噪声的方法完全可以借用随机过程的描述,也就是使用随机过程的描述,也就是用它的高斯分布函数和概率密度分布函数。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道受到了噪声的
- .【机器学习】隐马尔可夫模型(Hidden Markov Model,HMM)
十年一梦实验室
机器学习人工智能
概率图模型是一种用图形表示概率分布和条件依赖关系的数学模型。概率图模型可以分为两大类:有向图模型和无向图模型。有向图模型也叫贝叶斯网络,它用有向无环图表示变量之间的因果关系。无向图模型也叫马尔可夫网络,它用无向图表示变量之间的相关关系。概率图模型可以用于机器学习,人工智能,自然语言处理,计算机视觉,生物信息学等领域。一、马尔科夫模型随机过程马尔科夫过程马尔科夫链状态转移矩阵通过训练样本学习得到,采
- Python蒙特卡洛相关变量SciPy模拟
亚图跨际
交叉知识python蒙特卡洛scipy
SciPy的概率分布和分布拟合简述:概率分布对随机过程进行建模并将其拟合到观测数据。SciPy的概率分布、它们的属性和方法。通过拟合Weibull极值分布来模拟组件寿命的示例。一个自动化的拟合程序,从大约60个候选分布中选择最好的。SciPy中提供了123个分布:dist_continu=[dfordindir(stats)ifisinstance(getattr(stats,d),stats.r
- 随机过程——卡尔曼滤波学习笔记
m0_46521579
算法
一、均方预测和随机序列分解考虑随机序列使用预测定义称为的均方可预测部分。若相互独立,则是均方不可预测的。定义随机序列的新息序列V(k)基于样本观测的条件均值为0,即均方不可预测。V(k)与是正交的,即。二、卡尔曼滤波输入观测量,对进行估计得到1.系统模型状态方程观测方程其中,:状态向量,:观测向量,:状态噪声,,高斯白噪声:观测噪声,,高斯白噪声:状态转移矩阵,:观测矩阵,相关性质:(1)乘积率:
- 提笔惊鸿的小时光
星辰儿sy
阳光正好,微风不燥,很nice的天气~洗完头发,搬把小椅子坐在阳台上,阳光撒下来,世界都明亮了呢。早上睡到自然醒,上了一节应用随机过程,老师说起上次交的作业,说有一个同学文件名格式不对,别人都是word版,就那个同学是什么mdf版的,我心想谁这么傻。然后他就说学号尾号是214的,是个女生。我的妈妈耶,这不是我吗...我默默举起了手,场面一度陷入尴尬,结果老师说就记住你的学号了,情人节嘛。嘻嘻,好吧
- 马尔可夫算法及其实例(预测类模型)
爱静的龙猫
算法
马尔科夫预测模型是一种基于马尔科夫过程的预测方法。马尔科夫过程是一类具有马尔科夫性质的随机过程,即未来的状态只依赖于当前状态,而与过去状态无关。这种过程通常用状态空间和状态转移概率矩阵来描述。在马尔科夫预测模型中,系统被建模为处于一系列离散状态之一的马尔科夫链。每个状态表示系统可能的一个状态或情境,状态之间的转移由概率矩阵定义。这个概率矩阵描述了系统从一个状态转移到另一个状态的可能性。后无效性,马
- 频率域滤波图像复原的python实现——数字图像处理
筱筱西雨
图像处理python开发语言深度学习opencv图像处理
原理维纳滤波的原理是基于统计方法,旨在通过最小化信号的估计误差来改善信号的质量。它在处理具有噪声干扰的信号时特别有效。维纳滤波旨在从受噪声干扰的信号中恢复原始信号。它假设信号和噪声都是随机过程,并且它们的统计特性是已知的或可估计的。维纳滤波器的设计基于最小化输出和所需信号之间的均方误差(MSE)。数学原理假设x(n)是原始信号,d(n)是观测到的受噪声干扰的信号,y(n)是滤波器的输出。那么,噪声
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号