- 数学:什么是余弦定理?
千码君2016
数学几何原本几何构造法向量点积法坐标系解析法反推角的大小合力大小文本向量相似性度量
余弦定理是欧氏平面几何学基本定理,它是勾股定理的推广,描述了任意三角形中三条边和一个角的余弦之间的关系。具体内容如下:历史渊源:对余弦定理的研究可追溯到公元前3世纪欧几里得的《几何原本》,但最初它只是以几何定理的身份出现。直到16世纪,法国数学家韦达首次写出了三角形式的余弦定理。17-18世纪,对余弦定理的应用不多,直到19-20世纪,余弦定理才得到广泛应用。应用场景:在解三角形问题中,若已知三边
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 王阳明代数
花间流风
明明德数域王船山熵群与王阳明代数情感分析矩阵几何学
和悦空间的王阳明代数和晏殊几何学和悦空间是情感分析中的核心概念,它提供了描述意气实体过程的数学框架。王阳明代数和晏殊几何学是和悦空间中的重要结构,它们在情感分析、社会关系力学、气质砥砺学,人生意气场和社群成员魅力场中有着广泛的应用。本文将基于琴语言的离散事件仿真系统和推荐系统数据挖掘,介绍和悦空间的王阳明代数和晏殊几何学的基本概念、应用和问题,并探讨它们在模拟动力系统仿真(烛火流形学习引擎)中的重
- 怎么利用JS根据坐标判断构成单个多边形是否合法
小眼哥
GIS开发前端javascript前端开发语言
怎么利用JS根据坐标判断构成单个多边形是否合法引言在GIS(地理信息系统)、游戏开发、计算机图形学等领域,判断一组坐标点能否构成合法的简单多边形(SimplePolygon)是一个常见需求。合法多边形需要满足几何学上的基本规则,本文将详细介绍如何使用JavaScript实现这一判断。一、什么是合法的简单多边形合法的简单多边形需满足以下条件:顶点数量:至少3个顶点(非共线)闭合性:首尾顶点必须重合(
- 【C++ 科学计算】精准定位:三边定位算法实现
嵌入式职场
【C++/Go科学计算】c++算法开发语言
目录1、三边定位算法原理2、三边定位算法实现1、三边定位算法原理三边定位算法,也称为三边测量定位算法,是一种通过测量从目标点到三个已知点的距离来确定目标点位置的方法。其原理基于三角测量和三角几何学。三角形构建:首先,通过已知的三个位置点(也称为基站)构建一个三角形,其中目标点即将被定位在该三角形内部。距离测量:然后,从目标点到每个基站进行距离测量。这些距离可以通过各种传感器或信号传输系统(如GPS
- 探索三维螺旋线的几何奥秘:曲率与挠率的计算与可视化
老歌老听老掉牙
python曲率挠率
在几何学的广袤世界中,三维螺旋线以其优雅的形态和深邃的数学特性吸引着无数探索者。本文将深入剖析一段Python代码,它不仅绘制了三维螺旋线的曼妙身姿,还揭示了隐藏在其背后的几何密码——曲率与挠率,并通过可视化手段让这些抽象概念变得直观可感。三维螺旋线的数学定义三维螺旋线是一种经典的参数曲线,其位置向量$\mathbf{r}(t)$定义为:r(t)=[cos(t)sin(t)t]\mathbf{
- 蛋白质折叠的几何学习:等变注意力机制全解
燃灯工作室
Ai学习深度学习pytorch
蛋白质折叠的几何学习:等变注意力机制全解一、技术原理与数学基础1.1等变性的数学定义对于任意群元素g∈Gg\inGg∈G和输入输出空间Vin,VoutV_{in},V_{out}Vin,Vout,满足:f(ρin(g)x)=ρout(g)f(x)f(\rho_{in}(g)x)=\rho_{out}(g)f(x)f(ρin(g)x)=ρout(g)f(x)其中ρ\rhoρ表示群表示,在蛋白质折叠场
- PyOpenGL代码实战(一):创建窗口
沉星语
PyOpenGL代码实战python图形渲染
一、前言网络上有很多关于OpenGL的教程,但绝大多数都是C或C++的代码。本文章旨在教学如何在Python中编写OpenGL的代码。本文主要参考LearnOpenGL网站的教程,以实现一个Python版本的OpenGL代码框架。二、前置知识1、数学学习PyOpenGL,你可能需要一些基础的数学知识,特别是线性代数与几何学的相关知识。不用担心,你并不需要精通这些知识,只需要了解向量、矩阵、三角函数
- 1 解析方法与几何建模
确实啊,对对对
线性代数矩阵机器学习
1.1.1几何建模的思想人类对数学世界的探索源于两样东西:计数与丈量。计数让我们认识到“多少”以及如何计算增加或减少的数量,这就催生了数字的概念及后来的代数学;丈量则源自测量土地、角度和几何关系,进而发展为几何学。尽管我们高中毕业后可能对数学模型的理解还较为浅薄,但几何模型无疑是最直观的。通过一张图,我们可以迅速判断两个平面是否平行,哪两条线是否垂直。借助几何定理,我们还可以推算线段的长度等。几何
- AI专家Jesse Johnson畅谈生物技术领域的挑战与机遇
t0_54manong
个人开发
在当今科技飞速发展的时代,人工智能与生物技术的融合正成为一个热门话题。今天,我们深入探讨与著名数据科学家JesseJohnson的访谈,了解他在这一领域的独特见解和丰富经验。独特的职业转型之路JesseJohnson有着令人瞩目的职业轨迹。他最初在耶鲁大学担任讲师和研究员,专注于抽象三维空间的拓扑学和几何学。之后,他加入谷歌成为一名软件工程师,负责酒店搜索的数据分工作。然而,几年后,他渴望追求更有
- 闵氏几何详解
aichitang2024
算法数学知识点讲解几何学闵可夫斯基几何
闵氏几何详解闵氏几何(Minkowskigeometry)最初由数学家赫尔曼·闵可夫斯基(HermannMinkowski)提出,是现代几何学和理论物理的重要分支。它既与爱因斯坦的狭义相对论密切相关,也在更普遍的度量空间研究中占有显赫地位。本文将对闵氏几何的基础概念、结构、在物理中的用途以及与其他几何的对比等方面进行详细介绍。一、历史背景与概念渊源提出背景19世纪末到20世纪初,数学家们在研究欧几
- python怎么安装sympy库_SymPy库常用函数
weixin_39528559
简介SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理学等方面的功能。(来自维基百科的描述)Sympy安装方法安装命令:pipinstallsympy基本数值类型实数,有理数和整
- 流式学习(简易版)
想成为配环境大佬
论文学习信息可视化python
最近读论文看到了这个概念,感觉还挺有意思的流形(Manifold)广泛应用于多个领域,如几何学、物理学、机器学习等。流形本质上是一个局部类似于欧几里得空间的空间,即它在某些尺度下看起来像我们熟悉的平面或曲面,但整体结构可能是复杂的。简单来说,你可以把流形想象成一个“弯曲的”空间,在局部上看起来像我们熟悉的平面,但全局上可能是弯曲或折叠的。流形学习(ManifoldLearning)是一种用于降维(
- 黎曼几何引论:全纯截面曲率
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
黎曼几何引论:全纯截面曲率关键词:曲率全纯截面调和映射单纯形网格拓扑结构1.背景介绍1.1问题的由来在几何学中,曲率是衡量空间弯曲程度的一个基本概念。对于二维曲面而言,曲率可以通过球面模型上的局部映射来直观地理解,即曲率等于该点处的局部面积与理想平面上面积的比例。然而,当讨论更高维空间或非欧几里得空间时,曲率的概念变得更为抽象且复杂。1.2研究现状现代几何学中的许多分支,如黎曼几何、调和映射理论以
- 6 齐次坐标模块(homogen.rs)
Source.Liu
euclid库rusteuclid
homogen.rs代码定义了一个名为HomogeneousVector的结构体,它是用于表示三维空间中的齐次向量。齐次向量常用于计算机图形学和几何学中,特别是在处理投影和变换时。下面是对这段代码的详细解释和一些关键的代码片段分析:一、homogen.rs文件源码usecrate::point::{Point2D,Point3D};usecrate::vector::{Vector2D,Vecto
- 永不停息的心脏
yellowG
我发病的原因跟当时的课题有关,那时候我正在分析有关分形几何学和生物之间的各种关系。简单的举例:比如说随便找一棵树,仔细看一下某枝树杈,你会发现那个分杈和整棵树很像,有些分杈的比例和位置,甚至跟树本身的分杈比例和位置是一样的。如果再测量分杈的分杈的分杈,你会发现还是那样。假如你直接量叶梗和叶脉,还是整棵树分杈的比例。也就是说,是固定的一种模式来划分的;再说动物,人有五个手指,其实就是微缩了人躯干分出
- 数论——欧几里得算法
NarutoTime
数论算法c++数据结构c语言
1.欧几里得简介 欧几里得(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。2.欧几里得算法欧几里得算法用于:求解a和b的最大公约数。最大公约数英文为:Gre
- 射影几何学的复兴(三+)
现在开始发呆
下面以热尔岗对偶化笛沙格的三角形定理为例说明热尔岗的对偶原理。首先介绍下三角形的对偶:三角形由不在同一直线上的三个点和联接它们的三条线组成,对偶的图形则由不在同一点上的三条线以及联接它们的三个交点组成,对偶图形也是三角形,所以称三角形是自对偶的。热尔岗发明了两栏的书写格式,把对偶命题写在原命题旁,接着他把笛沙格定理改写为:笛沙格定理笛沙格定理的对偶如果有两个三角形,联接对应顶点的线过同一个点O,那
- 06:奥派的经济学方法论
瞰川
1、来自几何学的启发。古希腊欧几里得在公元前3世纪整理成的《几何原本》,以及由它形成的欧式几何乃至整个几何学,至今仍在我们日常生活的方方面面发挥着重要作用。在世界的出版物中,《几何原本》是除了《圣经》之外,全球再版次数最多的一本书。2、欧氏几何是一个演绎体系,欧几里得先给出最初的定义和公理,将定义和公理作为已知,先证明了第一个命题,然后以此为基础来证明第二个命题,以此类推,他通过最初的五个公理演绎
- 关于人好藏私!
纵情嬉戏天地间
人好藏私!有的藏的私,叫个好东西,有的私是别人的私上私,也给那藏,多少就滑稽的很!人还好学,学,有偷学的,有拜师学的,多少年不出功,在于偷来套路不对,抑或套路对了,心法不对,不知道套路下边都是些什么?看到的说些!另,人身上的经络,大多跟筋连带着,经络只能感觉,属于隐性,筋多少显形!以及人身的重心,根据筋骨皮,气的调节!符合勾股定律,三角性,是所有几何学力学,最基本,最花的地方,这花开的了很多个世界
- 空间观念——10大核心概念之三
感恩遇见0331
《数学课程标准(2011年版)》从四个方面对空间观念进行刻画描述:空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述物体的运动和变化;依据语言的描述画出图形等。空间观念贯穿在图形与几何学习的全过程中,无论是图形的认识,图形的运动,图形与坐标,都承载着发展学生空间观念的任务。空间观念的培养是一个长期的经验积累的过程,因此对教学的
- 人类心灵对空间和时间认知,把握他人心灵状态的能力,心灵意向性
蓝色多莉
阅读笔记第168/365天今日阅读《用得上的哲学》——破解日常难题的99种思考方法作者:徐英瑾第三章:心灵哲学:谁在思考?62、人类的心灵对空间的认知。人类对于空间的把握并不是根据纯粹的几何学的计算来进行的,而是透过一种寻家的情绪来进行的。很多事物与主体之间的远近,并不反映两者之间的物理距离,而是反映了心灵所处的情绪状态。这种情绪常常被称为乡愁。1)人类乡愁的演化论根苗。人类的认知能力是慢慢从动物
- 万物皆数
晨峰_02c6
这个世界有天然的数学原理,如斐波那契数列。爱因斯坦用E=mc²描述宇宙而引发的慨叹“宇宙最不可理解之处,就是它居然是可以被理解的”。几何学上的迷人图形曼德博集合,它的轮廓是一个几何花边,具有不可思议的和谐性和精确性。人机大战中,阿尔法狗的第37手被人类认为是“坏子”的棋,最终指向了胜利的结局!这一切看似神秘力量操控的事件背后,都有着扎扎实实的数学理论作为支撑。数学,这门同时寻找真相和美的学科,它是
- 高效阅读4.5读懂教材和课本的方法
飞鸟绝千山
一般来说,教材和课本中的内容都是用来学习的,和考试挂钩。他们有以下几个特点:1、课本使用比较严谨的语言。教材的最终目的是教学,所以很多教材的开篇第一章讲的是概念,通过概念让读者了解一个新学科的含义和范畴。比如说我们上初中的时候学的《几何学》,那里面就有很多的定理,公式以各种角的概念。后面的练习全部都是围绕这些概念公式来做的。2、教材和课本有比较系统的行文结构。教材和课本有严密的逻辑结构,从开始抽丝
- 乌合之众
白露秋月
这几天心情复杂,每种制度都有优劣,不管谁在岗位上都要维持前行,但是用人涵盖了太多东西,都不是能解释的。苏格拉底当年被判死刑,大家会以为为什么得到死刑?法庭宣判的死刑,不是大家以为的独裁者的意志,苏格拉底是被人民陪审团宣判的死刑,且不能缴纳罚金,人民陪审团用400多比200多,这样绝对的比例投了死刑票。苏格拉底伟大于时代,开启了希腊哲学的路,开启了科学的求真精神,几何学因此而发展,完美的定理都是建立
- Open CASCADE学习|求圆的切线与切点
老歌老听老掉牙
OpenCASCADE学习OpenCASCADEc++
在几何学中,一个圆的切线被定义为与圆相切于一点的直线,而该点被称为切点。这意味着切线在切点处与圆仅有一个交点,并且在该点处,切线的方向与圆的半径垂直。以下是关于圆的切线和切点的一些重要性质:切线与半径的垂直性:在切点处,切线与通过该点的半径垂直。这是圆的切线最基本的性质,也是它得名的原因。切点的唯一性:对于给定的圆和一条不在圆上的直线,它们最多只有一个切点。换句话说,一条直线不能与一个圆在多于一个
- 射影几何学
csuzhucong
目录一,基本概念1,无穷远点2,圆、切线二,对偶原理三,仿射和透视四,帕斯卡定理、布列安桑定理1,帕斯卡(Pascal)定理2,布列安桑(Brianchon,布里昂雄)定理五,帕普斯定理、帕普斯定理的对偶1,帕普斯(Pappus)定理2,帕普斯定理的对偶一,基本概念1,无穷远点平面内有唯一的一个无穷远点。如果一个平面内两条直线平行,那么这两条直线就交于无穷远点。2,圆、切线把直线看作是具有无穷大半
- 太极瑜伽的特点
给你的祝福
太极的体势是环形的,瑜伽的体势是线形的,太极与瑜伽的结合如同几何学中圆与切线的结合,是自然的也是科学的。太极瑜伽的每个体式融入太极能量,先下沉而后上升,环形练习,结合瑜伽体式能量上升的线性特点,配合呼吸、吐纳,让气以环形的路线得到沉聚,以线形单位路线得到抒发,从而完成身体内部静中有动、动中有静的能量聚变过程。太极瑜伽课程以脊柱流动为主轴,利用太极拳中力随圆弧运转,结合瑜伽体式中支撑与伸展脊柱的特性
- CGAL的3D多面体的Minkowski和
网卡了
CGAL3d几何学算法
一把勺子和一颗星星的闵可夫斯基总和。1、介绍机器人能进入房间吗?倒立机器人和障碍物的Minkowski和描述了机器人相对于障碍物的非法位置。由于Minkowski总和的边界描述了合法位置,因此机器人在外部区域和房间之间有一条路径。Minkowski和在几何学中是一个重要的概念,尤其在计算几何和计算机图形学中。对于两个点集P和Q,它们的Minkowski和被定义为P⊕Q={p+q∣p∈P,q∈Q}。
- 王德峰:毕达哥拉斯学派与几何学的诞生(一)
修多罗
数的宇宙观毕达哥拉斯这个想法听上去很奇怪,数本是人类用来整理外部事物的方法,怎么能够充当宇宙的本源?我们请毕达哥拉斯给出证据来。毕达哥拉斯肯定拿不出证据。整个宇宙由数来构造的。他所说的就是他看到的如此,数与数之间的和谐比例的关系,不仅是人类的数学思想,而就是宇宙的构造本身。他举了例子,比如说乐器,假如我们有小提琴,我们拉小提琴的时候,我们左手的手指在拨动琴弦,让他以一定的距离的方式,就一定得按照一
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开