inverse mapping
f f − 1 = f − 1 f = e ff^{-1}=f^{-1}f=e ff−1=f−1f=e
multiply
C = A × B = { ( a i , b j ) , ∣ a i ∈ A , b j ∈ B } C=A \times B = \left \{(a_i, b_j), \mid a_i \in A, b_j \in B \right \} C=A×B={(ai,bj),∣ai∈A,bj∈B}
binary opration
R : A × A → A , o r R : ( a , b ) → c = R ( a , b ) R: A \times A \rightarrow A, or R: (a, b) \rightarrow c = R(a, b) R:A×A→A,orR:(a,b)→c=R(a,b)
c = a ⋅ b c = a \cdot b c=a⋅b
homomorphism
f ( x i ⋅ x j ) = f ( x i ) × f ( x j ) f(x_i \cdot x_j) = f(x_i) \times f(x_j) f(xi⋅xj)=f(xi)×f(xj)
φ ( g g ′ ) = φ ( g ) φ ( g ′ ) \varphi(gg')=\varphi(g)\varphi(g') φ(gg′)=φ(g)φ(g′)
kernels
The kernel of a homomorphism α : G → G ′ \alpha:G \rightarrow G' α:G→G′
k e r ( α ) = { g ∈ G ∣ α ( g ) = e } ker(\alpha)=\{g\in G | \alpha(g) = e \} ker(α)={g∈G∣α(g)=e}
G / k e r ( α ) ≅ I m k e r ( α ) G/ker(\alpha) \cong Im \ ker(\alpha) G/ker(α)≅Im ker(α)
isomorphism
f ( x i ⋅ x j ) ↔ f ( x i ) × f ( x j ) f(x_i \cdot x_j) \leftrightarrow f(x_i) \times f(x_j) f(xi⋅xj)↔f(xi)×f(xj)
conjugate
g ′ = h g h − 1 g' = hgh^{-1} g′=hgh−1
normal subgroups
g H g − 1 = H → H ⊴ G gHg^{-1} = H \rightarrow H \unlhd G gHg−1=H→H⊴G
quotient groups
H ⊴ G → G = g α H ∪ g β H ∪ g γ H ⋯ → G / H = { g H : g ∈ G } H \unlhd G \rightarrow G = g_{\alpha}H \cup g_{\beta}H \cup g_{\gamma}H \cdots \rightarrow G/H = \{gH:g\in G\} H⊴G→G=gαH∪gβH∪gγH⋯→G/H={gH:g∈G}
action of group
left action G on X: $ G \times X \rightarrow X$
written: ( g , x ) ↦ g ⋅ x (g, x) \mapsto g \cdot x (g,x)↦g⋅x
another right action G on X: X × G → X X \times G \rightarrow X X×G→X
written: ( g , x ) ↦ x ⋅ g − 1 (g, x) \mapsto x \cdot g^{-1} (g,x)↦x⋅g−1
adjoint action
A d g : G → G Ad_g: G \rightarrow G Adg:G→G
A d g g ′ = g g ′ g − 1 Ad_g g' = gg'g^{-1} Adgg′=gg′g−1
automorphism
φ : G → G \varphi : G \rightarrow G φ:G→G
Set
A 1 ∩ A 2 ∩ A 3 ⋯ = ⋂ i = 1 n A i A_1 \cap A_2 \cap A_3 \cdots = \bigcap_{i=1}^n A_i A1∩A2∩A3⋯=⋂i=1nAi
general linear group
Let k be a field and choose n ∈ N n \in N n∈N Then G = G L ( n , k ) = G L n ( k ) G = GL(n, k) = GL_n(k) G=GL(n,k)=GLn(k) is defined to be the set of all invertible n × n matrices with entries in k called the general linear group degree n.
For a finite-dimensional
F-vector space V , the F-linear automorphisms of V form a group $GL(V) $ called the general linear group of V
The quintic equation is unsolvable
0 = a o + a 1 x 1 + a 2 x 2 2 + a 3 x 3 3 . . . 0=a_o + a_1x_1+a_2x_2^2+a_3x_3^3... 0=ao+a1x1+a2x22+a3x33...
0 = ( x − x 1 ) ( x − x 2 ) ( x − x 3 ) . . . 0=(x-x_1)(x-x_2)(x-x_3)... 0=(x−x1)(x−x2)(x−x3)...
set: M = { 1 , 2 , . . . , n ∣ n ≥ 5 } M=\{1,2,...,n|n \ge 5\} M={1,2,...,n∣n≥5}
symmetry group: S n = { ( 1 ) , ( 12 ) , ( 13 ) , ( 23 ) , ( 123 ) , ( 132 ) , . . . } S_n=\{(1), (12), (13), (23), (123), (132), ...\} Sn={(1),(12),(13),(23),(123),(132),...}
normal subgroup: g N = { g , g a } = N g = { g , a g } ⇒ a g = g a gN=\{g,ga\}=Ng=\{g,ag\} \Rightarrow ag=ga gN={g,ga}=Ng={g,ag}⇒ag=ga
H = g H g − 1 H = g − 1 H g g H = g g − 1 H g = H g H=gHg^{-1} \\ H=g^{-1}Hg \\ gH=gg^{-1}Hg=Hg \\ H=gHg−1H=g−1HggH=gg−1Hg=Hg
{ ( 1 ) } ⊴ H 1 ⊴ H 2 ⊴ H 3 . . . ⊴ H n = G \{(1)\} \unlhd H_1 \unlhd H_2 \unlhd H_3 ... \unlhd H_n = G {(1)}⊴H1⊴H2⊴H3...⊴Hn=G
K / F K/F K/F
F = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F n = K F=F_0 \subset F_1 \subset F_2 \subset ... \subset F_n = K F=F0⊂F1⊂F2⊂...⊂Fn=K
domain isomorphism(Galois Group): G a l ( K / F ) Gal(K/F) Gal(K/F)
ϕ ( a ) = a , ∀ a ∈ F , ϕ ∈ G a l ( K / F ) \phi(a)=a, \forall a \in F, \phi \in Gal(K/F) ϕ(a)=a,∀a∈F,ϕ∈Gal(K/F)
G a l ( K / F ) ⊴ S n Gal(K/F) \unlhd S_n Gal(K/F)⊴Sn
α ∈ { a 1 , a 2 , a 3 , . . . , a m } , ϕ ∈ G a l ( K / F ) \alpha \in \{ a_1, a_2, a_3,...,a_m \}, \phi \in Gal(K/F) α∈{a1,a2,a3,...,am},ϕ∈Gal(K/F)
0 = ϕ ( 0 ) = ϕ ( a n α n + a n − 1 α n − 1 + . . . + a 1 α + a 0 ) = ϕ ( f ( α ) ) = f ( ϕ ( α ) ) = a n ϕ ( α ) n + a n − 1 ϕ ( α ) n − 1 + . . . + a 1 ϕ ( α ) + a 0 0=\phi (0) = \phi (a_n \alpha^n + a_{n-1 }\alpha^{n-1}+...+a_1\alpha + a_0)=\phi(f(\alpha)) = f(\phi(\alpha))=a_n \phi(\alpha)^n + a_{n-1} \phi(\alpha)^{n-1}+...+ a_1 \phi(\alpha) + a_0 0=ϕ(0)=ϕ(anαn+an−1αn−1+...+a1α+a0)=ϕ(f(α))=f(ϕ(α))=anϕ(α)n+an−1ϕ(α)n−1+...+a1ϕ(α)+a0
Define: a ( i ) = j , 1 ≤ i , j ≤ n a(i)=j,1 \le i,j \le n a(i)=j,1≤i,j≤n
g ∈ S n , g ( i ) = i , g ( j ) = k ≠ j g\in S_n, g(i)=i, g(j)=k\not=j g∈Sn,g(i)=i,g(j)=k=j
a g ( i ) = a ( g ( i ) ) = a ( i ) = j , g a ( i ) = g ( a ( i ) ) = g ( j ) = k ⇒ ag(i)=a(g(i))=a(i)=j,\ ga(i)=g(a(i))=g(j)=k \Rightarrow ag(i)=a(g(i))=a(i)=j, ga(i)=g(a(i))=g(j)=k⇒ a g ( i ) ≠ g a ( i ) ag(i)\not=ga(i) ag(i)=ga(i)
normalization constant:
( x − x 1 ) ( x − x 2 ) ( x − x 3 ) ( x − x 4 ) ( x − x 5 ) (x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5) (x−x1)(x−x2)(x−x3)(x−x4)(x−x5)
x 1 , x 2 , x 3 , x 4 , x 5 x_1,x_2,x_3,x_4,x_5 x1,x2,x3,x4,x5
$c^m=Q \
(c^m / Q -1) = 0 \
c^m = 1 \
c = e^{2\pi i/mb}, b \in [1,2,3,4,\cdots m]
$
f : c → c a , g : c → c b ∣ f ∗ g = g ∗ f = c ( a + b ) f:c \rightarrow c^a, g:c \rightarrow c^b|f * g = g * f = c^{(a+b)} f:c→ca,g:c→cb∣f∗g=g∗f=c(a+b)
f ( x ) = x n + t n − 1 x n − 1 + t n − 2 x n − 2 + t n − 3 x n − 3 . . . t 1 x + t 0 f(x) = x^n+t_{n-1}x^{n-1}+t_{n-2}x^{n-2}+t_{n-3}x^{n-3}...t_1x+t_0 f(x)=xn+tn−1xn−1+tn−2xn−2+tn−3xn−3...t1x+t0
Q ( t 0 , t 1 , t 2 . . . t n − 1 ) Q(t_0, t_1, t_2... t_{n-1}) Q(t0,t1,t2...tn−1)
K = Q ( t 0 , t 1 , t 2 , . . . , t n − 1 ) ( x 1 , x 2 , x 3 . . . x n ) K=Q(t_0, t_1, t_2, ..., t_{n-1})(x_1, x_2, x_3 ... x_n) K=Q(t0,t1,t2,...,tn−1)(x1,x2,x3...xn)
G a l ( K / O ) ⊴ G a l ( K / F ) Gal(K/O)\unlhd Gal(K/F) Gal(K/O)⊴Gal(K/F)
G a l ( O / F ) ≃ G a l ( K / F ) / G a l ( K / O ) Gal(O/F)\simeq Gal(K/F)/Gal(K/O) Gal(O/F)≃Gal(K/F)/Gal(K/O)
[1] S4 S5的子群
[2] 二阶子群
[3] @misc{milneGT,author={Milne, James S.},title={Group Theory (v3.16)},year={2020},note={Available at www.jmilne.org/math/},pages={137}}