- 傅里叶变换:从时域到频域的信号处理方法
太极拳法
信号处理
傅里叶变换是一种重要的信号处理方法,它可以将一个信号从时域转换到频域。通过傅里叶变换,我们可以分析信号的频谱特性,识别信号中的频率成分,并进行滤波、降噪、频域操作等处理。本文将介绍傅里叶变换的原理和应用,并提供相应的源代码示例。傅里叶变换的原理傅里叶变换基于傅里叶级数的思想,它将一个周期信号分解为一系列正弦和余弦函数的叠加。对于非周期信号,我们可以将其看作是一个无穷长的周期信号,然后进行傅里叶变换
- 傅里叶级数分解问题
题目问题1.在区间[−l,l][-l,l][−l,l]上分解为完整傅里叶级数:(a)ezxe^{zx}ezx,其中z∈Cz\in\mathbb{C}z∈C;找出zzz的“例外”值;(b)cos(ωx)\cos(\omegax)cos(ωx),sin(ωx)\sin(\omegax)sin(ωx),其中00(\etal)^2+(n\pi)^2>0(ηl)2+(nπ)2>0对所有n≥1n\geq1
- 结构力学数值方法:谐波平衡法:高级谐波平衡法技术_2024-08-05_22-46-19.Tex
chenjj4003
材料力学2算法线性代数矩阵决策树人工智能
结构力学数值方法:谐波平衡法:高级谐波平衡法技术绪论谐波平衡法简介谐波平衡法(HarmonicBalanceMethod,HBM)是一种用于求解非线性振动系统周期解的数值方法。它通过将系统的响应表示为一系列谐波函数的线性组合,然后利用傅里叶级数展开,将非线性微分方程转换为一组代数方程,从而简化了求解过程。这种方法特别适用于分析具有周期性激励的非线性系统,如机械振动、电路振荡等。高级谐波平衡法技术的
- 使用MATLAB绘制周期信号的,周期信号频域分析及MATLAB实现.ppt
逆生长大叔
使用MATLAB绘制周期信号的
周期信号频域分析及MATLAB实现.ppt第七章信号频域分析及MATLAB实现7.1周期信号的傅利叶级数与信号的频谱7.2周期信号的频谱分析及MATLAB实现7.3用MATLAB分析典型周期信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期
- matlab绘制周期三角波信号,第7章 周期信号频域分析与 MATLAB 实现.ppt
得有店
matlab绘制周期三角波信号
第七章信号频域分析及MATLAB实现7.1周期信号的傅利叶级数与信号的频谱7.2周期信号的频谱分析及MATLAB实现7.3用MATLAB分析典型周期信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.1周期信号的傅里叶级数与信号的频谱7.2Matl
- 信号与系统03-信号的频域分析
江畔柳前堤
信号与系统pyqtpython算法数据结构线性回归排序算法链表
第3讲:信号的频域分析一、引言在信号处理中,频域分析是理解信号本质特征的重要工具。通过将信号从时域转换到频域,我们可以更直观地观察信号的频率组成,从而设计高效的滤波器、特征提取器或系统模型。而人工智能(AI)中的许多技术(如频谱分析、语音识别、图像压缩)都依赖于频域分析的核心思想。本节课将从傅里叶级数与傅里叶变换出发,结合AI中的典型应用,深入探讨频域分析的原理与实践。二、傅里叶级数与傅里叶变换(
- 傅里叶变换之间的关联——频率变量是纽带
phoenix@Capricornus
数字信号处理信号处理
因为研究滤波器设计,需要关联离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT),但是被冈萨雷斯坑的,前面的基础没有涉及离散时间傅里叶变换(DTFT),各种想办法,才发现傅里叶变换的频率变量之间有着紧密的关联,一环扣一环。冈萨雷斯没有讲离散时间傅里叶变换(DTFT),而其他傅里叶变换也是自己是自己。不建立知识点之间的关联的人只能说明他弱,站位低。傅里叶级数(FS)连续时间傅里叶级数正变换Xk=
- 离散傅里叶级数(DFS)——从DTFT到DFT的桥梁
phoenix@Capricornus
数字信号处理图像处理
连续时间傅里叶级数(CTFS)指数形式的傅里叶级数x(t)=∑k=−∞+∞XkejkΩ0tx(t)=\sum_{k=-\infty}^{+\infty}X_k{\rme}^{{\rmj}k\Omega_0t}x(t)=k=−∞∑+∞XkejkΩ0t其中k=0,±1,±2,⋯k=0,\pm1,\pm2,\cdotsk=0,±1,±2,⋯,XkX_kXk表示傅里叶复系数,Xk=1T∫−T/2T/2x(
- 20250330-傅里叶级数专题之离散傅里叶变换(5/6)
陈晨辰熟稳重
傅里叶专题离散傅里叶变换
5.傅里叶级数专题之离散傅里叶变换推荐视频:工科生以最快的速度理解离散傅立叶变换(DFT)哔哩哔哩20250328-傅里叶级数专题之数学基础(0/6)-CSDN博客20250330-傅里叶级数专题之傅里叶级数(1/6)-CSDN博客20250330-傅里叶级数专题之傅里叶变换(2/6)-CSDN博客20250330-傅里叶级数专题之离散傅里叶级数(3/6)-CSDN博客20250330-傅里叶级数
- 【傅里叶级数原理讲解--信号的合成与分解--含LabVIEW源码】
做一个码农都是奢望
courselabviewFFT传感器与测试技术
测试技术-信号的合成与分解传感器与测试技术根据傅里叶变化进行距离矩形波信号Codedesign#程序下载传感器与测试技术傅里叶级数的学习一直是难点,若不对信号进行分析,很难掌握,或者只能理解概念而无法在实际信号中得到综合应用。根据傅里叶变化进行距离N年前,采用LabVIEW设计了信号的合成。主要使用了:信号采样概念,fs采样率,f信号频率,每周期的采样点N=fs/f;队列生产和消费结构来实现信号合
- 信号处理基础:信号的时域和频域分析_(9).傅里叶变换
kkchenkx
信号处理技术仿真模拟信号处理
傅里叶变换引言傅里叶变换是一种将信号从时域转换到频域的数学工具。通过傅里叶变换,可以将复杂的时域信号分解为一系列简单的基本频率分量,这对于信号的分析、处理和设计具有重要意义。傅里叶变换在信号处理领域有着广泛的应用,包括滤波、频谱分析、通信系统设计等。傅里叶级数连续时间傅里叶级数(CTFS)连续时间傅里叶级数(Continuous-TimeFourierSeries,CTFS)是一种将周期性连续时间
- 傅里叶变换理解
KL_lililli
笔记
傅里叶变换(FourierTransform)是一种数学工具,它可以把复杂的信号分解成不同频率的正弦波。就像我们把一首歌分解成不同的音调(低音、中音、高音)一样,傅里叶变换能帮我们看清信号里有哪些频率成分。严格来讲其实傅里叶又有多种形式,大致是傅里叶级数,离散傅里叶级数,傅里叶变换....但是这里我们着重讲关于傅里叶的理解,并不会涉及到严格的公式推导,只希望大家看完这篇文章可以知道傅里叶变换究竟是
- 压缩感知中的稀疏基是什么?
superdont
计算机视觉入门计算机视觉人工智能pythonopencv算法
要压缩感知中,涉及到要将信号转换为稀疏形式。此时,需要用到的就是稀疏基。稀疏基可能是傅里叶基或者小波基。例如,如下参考文献提到:参考基傅里叶基和小波基是用于信号处理和图像处理中的常用数学工具,它们能够帮助我们在不同的基下表示信号,便于对信号的分析、压缩和重建。傅里叶基(FourierBasis):傅里叶基是一组复指数函数(对于连续信号)或者傅里叶级数(对于离散信号),可以用来表示周期性信号。对于任
- 傅里叶变换(中)
zidea
封面傅里叶级数构成图形上我们了解什么是傅里叶变换,现在再从公式来推导一下傅里叶变换这样一个公式就很好理解,首先我看常数项Cg(x)=C一定是一个周期函数,这个应该没有问题,而且他周期是任意的常数项可以用于调节函数值我们来思考一下为什么傅里叶级数需要sinx和cosx函数我们知道任何一个函数都可以写成一个奇函数和偶函数的和这样形式,其中是偶函数相当于cosx而相当于奇函数(sinx)那么我们再来看一
- 级数知识点小结2-幂级数
Raow1
(虽然应该让函数项级数与常数项级数同一级别,但由于函数项级数主要提及的是幂级数和傅里叶级数,便直接将其提上来重点说明。只需要心里明白:幂级数与傅里叶级数属于函数项级数,而与函数项级数相对应的概念是常数项级数。)函数项级数的概念:如果给定一个定义在区间上的函数列那么由这函数列构成的表达式称为定义在区间上的(函数项)无穷级数,简称(函数项)级数。PS:此外还有收敛点,收敛域,发散点,发散域,和函数,余
- 全国大学生数学竞赛备考——高数上(极限、导数、微分、积分、级数)
我叫两万块
线性代数
我真的会忘(3)极限两个重要极限公式常用极限公式导数、微分与积分牛顿-莱布尼茨公式莱布尼兹公式微分中值定理罗马中值定理拉格朗日中值定理柯西定理泰勒公式几个常见的麦克劳林公式洛必达曲率曲率圆牛顿迭代法积分中值定理分部积分法级数正项级数审敛法绝对收敛和条件收敛交错级数莱布尼茨定理幂级数泰勒级数欧拉公式傅里叶级数全国大学生数学竞赛竞赛进程分为两个阶段,第一阶段为全国大学生数学竞赛初赛(也称为预赛、赛区赛
- Learning in the Frequency Domain(频域)阅读笔记
海浪在开花
图像分类计算机视觉人工智能
1、背景知识1.1、频域频域相关知识:频谱、相位谱、傅里叶变换、欧拉公式等…傅里叶级数:任何周期函数都可以分解成一堆(无穷个)正弦函数Asin(wx+φ),又因为sin(a+b)=sinacosb+cosasinb,则对于任何周期函数可以分解为一堆正弦和余弦函数。傅里叶级数所做的工作:把{1,sinx,cosx,sin2x,cos2x,…,…}看成空间的基(原因:这组基的各部分之间是相互正交的,也
- 【第三章】数字信号处理 DFS离散傅里叶级数与DFT离散傅里叶变换
Gowilli
数字信号处理信号处理算法信号与系统数字信号处理
对应程佩青《数字信号处理》第三章离散傅里叶变换,文章全部为原创,其中独创性地研究了从DFS推导出DFT,并探讨了DFT时域和频域点数的关系,在中文互联网上为首创。文章内容较多,建议点赞收藏后结合书本学习。离散傅立叶级数(DFS)傅立叶级数:周期函数(连续时间),离散频率离散傅立叶级数:周期序列(离散时间),离散频率表达式周期为NNN序列x~(n)\tilde{x}(n)x~(n)用类比于连续周期信
- 深入理解傅里叶变换
赵孝正
深度学习数学基础算法
目录1.什么是傅里叶变换2.为什么要分解为正弦波的叠加参考资料1.什么是傅里叶变换高等数学中一般是从周期函数的傅里叶级数开始介绍的,这里也不例外。简单的说,从高中我们就学过一个理想的波可以用三角函数来描述,但是实际上的波可以是各种奇形怪状的。首先我们来看具有固定周期的波,下图中展示了4种常见的周期波。傅里叶级数告诉我们,这些周期信号都可以分解为有限或无限个正弦波或余弦波的叠加,且这些波的频率都是原
- 傅里叶级数(Fourier)
普林斯顿uu
数学学习经验分享
一、傅里叶展开的意义1.泰勒展开的基本形式2.傅里叶展开的基本形式二、三角函数系1.三角函数系2.性质3.积化和差公式4.例题讲解三、如何求解傅里叶级数中的a0、an、bn四、傅里叶级数的展开方法和狄利克雷(Dirichlet)收敛定理1.展开方法2.狄利克雷(Dirichlet)收敛定理说明五、正弦级数和余弦级数1.正弦级数和余弦级数介绍2.奇延拓和偶延拓六、如何求解周期为2L的fourier级
- OpenCV实践(2)- 矩阵的掩码操作
tupelo-shen
OpenCV图像处理opencv掩码操作卷积运算filter2D
1描述在对数字图像进行处理时,我们一般都会在空间域(spatialdomain)或者频域(frequencydomain)中进行。所谓“空间域”,实际上指的是图像本身,在空间域上的操作常常是改变像素点的值,也就是经过一个映射(我们所做的变换,如滤波等),将原来的f(x,y)变换为新的g(x,y)。而“频域”,它的数学基础是法国学者傅里叶提出的傅里叶级数和随后发展起来的傅里叶变换。在这其中起到重要作
- 快速傅里叶变换(FFT),真的很细
电子宁采臣
数字信号处理算法信号处理傅立叶分析
文章目录一、前言二、傅里叶变换的前世今生三、DTFT和DTF四、FFT的蝶形变换(一)对称性、周期性和可约性(二)FFT的核心思想(三)按时间抽选的基2--FFT算法四、FFT变换的应用(一)获取信号的频率幅值相位(二)频谱泄漏参考资料一、前言在电赛中,使用FFT算法进行信号频谱分析极其常用,为了给大家科普FFT,本博客将从傅里叶级数到傅里叶变换,再到离散时间傅里叶变换、离散傅里叶变换,之后再简单
- 音频信号的基波、谐波
“逛丢一只鞋”
失真度测试音视频
基波谐波在振动学里认为一个振动产生的波是一个具有一定频率的振幅最大的正弦波叫基波。这些高于基波频率的小波就叫作谐波。谐波是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量,通常称为高次谐波,而基波是指其频率与工频(50Hz)相同的分量。在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。谐
- 一篇文章帮你梳理 FT 、FS、 DTFT、 DFS、 DFT
篱笆外的xixi
数字信号处理---matlab信号处理信息与通信学习方法笔记
博主最近在复习数字信号处理,发现几个概念类的知识点属实有点迷糊,相信也有不少小伙伴发愁,今天一篇文章带大家梳理一下数字信号系统中FT、FS、DTFT、DFS、DFT都是些啥玩应,他们的含义区别联系作用都是什么。先来一张总的框图,有一定基础的小伙伴应该能反应过来,不懂也没关系,看完这篇文章就会豁然开朗了。目录1、FS——傅里叶级数2、FT———傅里叶变换3、DTFT——离散时间傅里叶变换4、DFT—
- 方波 离散傅里叶级数 MATLAB
lingllllove
matlab算法开发语言
%方波离散时间傅里叶变换L=5;N=10;k=[-N/2:1:N/2]; %占空比基本周期离散时间的参数xn=[ones(1,L),zeros(1,N-L)];%生成方波序列XK=dfs(xn,N);magXK=abs([XK(N/2+1:N),XK(1:N/2+1)]);subplot(2,2,3);stem(k,magXK);axis([-N/2,N/2,-0.5,5.5]);xlabel
- 傅里叶级数、傅里叶变换、小波变换、离散余弦变换的理解
穆_清
数字图像处理及OpenCV图像处理
目录1.傅里叶级数2.傅里叶变换1.傅里叶级数功能:能把任意周期性函数展开成一系列正弦、余弦函数的和。公式:f(x)=a02+∑n=1∞(ancos(2πnxT)+bnsin(2πnxT))傅里叶系数an=2T∫x0x0+Tf(x)⋅cos(2πnxT)dx,n∈{0}⋃Nbn=2T∫x0x0+Tf(x)⋅sin(2πnxT)dx,n∈N\begin{gathered}f(x)=\frac
- [足式机器人]Part2 Dr. CAN学习笔记 - Ch03 傅里叶级数与变换
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-Ch03傅里叶级数与变换1.三角函数的正交性2.周期为2π2\pi2π的函数展开为傅里叶级数3.周期为2L2L2L的函数展开4.傅里叶级数的复数形式5.从傅里叶级数推导傅里叶变换FT6.总结1.三角函数的正交性三角函数系:集合{sinnx,cosnx}n=0,1,2,⋯\left\{\sinnx,\cosnx\right\}n=
- MIT_线性代数笔记:第 24 讲 马尔可夫矩阵;傅里叶级数
浊酒南街
MIT_线性代数笔记线性代数笔记矩阵
目录马尔可夫矩阵Markovmatrices傅里叶级数Fourierseries本讲学习马尔可夫矩阵和傅里叶级数,两者是关于特征值和投影矩阵的应用。马尔可夫矩阵MarkovmatricesA=[0.10.010.30.20.990.30.700.4]A=\begin{bmatrix}0.1&0.01&0.3\\0.2&0.99&0.3\\0.7&0&0.4\end{bmatrix}A=0.10.2
- 数字信号处理笔记(下)
乐天_bubble
通信matlab学习
数字信号处理3.离散傅里叶变换DFT3.1离散傅里叶变换的定义及其物理意义3.1.2周期序列的傅里叶级数3.2DFT的性质3.3频率域采样定理4快速傅里叶变换FFT4.1时域抽取的基2FFT算法原理及其运算4.2频域抽取的基2FFT算法原理及其运算5.时域离散系统的网络结构5.1离散时间系统的模拟及其原理5.2系统框图及其结构形式5.3信号流图6无线脉冲响应IIR数字滤波器设计6.2模拟滤波器设计
- 数字图像处理关于傅立叶变换的小记
Gowi_fly
数字图像处理
数字图像处理关于傅里叶变换的小记文章目录数字图像处理关于傅里叶变换的小记背景复数傅里叶级数频域与时域复数形式的傅里叶级数的证明傅立叶变换与傅立叶逆变换一维离散傅立叶变换二维离散傅立叶变换时间消耗冲激卷积卷积的求法(利用傅立叶变换)Nyquist采样定理图像的内插和重采样背景傅里叶级数得名于法国数学家约瑟夫·傅里叶(1768年–1830年),他提出任何周期函数都可以展开为三角级数。此前数学家如拉格朗
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D