- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 线性代数基础
wq_151
mathematic线性代数
Base对于矩阵A,对齐做SVD分解,即UΣV=svd(A)U\SigmaV=svd(A)UΣV=svd(A).其中U为AATAA^TAAT的特征向量,V为ATAA^TAATA的特征向量。Σ\SigmaΣ的对角元素为降序排序的特征值。显然,U、V矩阵中的列向量相互正交,所以也可以视V为svd分解给出了A的列向量空间的正交基,其中最大奇异值(或特征值)对应的特征向量捕捉了数据变化的最大方向。求满足A
- 机器学习案例-决策树实现鸢尾花分类
Ausgelebt
机器学习相关python分类
机器学习案例-决策树实现鸢尾花分类目录机器学习案例-决策树实现鸢尾花分类1.选题目的和意义2.主要研究内容2.1决策树算法分类(区别于树的结构和构造算法)2.2决策树算法详解2.3决策树的应用3.算法设计3.1数据分析3.1.1Iris数据集基本介绍3.1.2样本标签值分布3.1.3样本特征值分布3.1.4相关性热力图3.2建立决策树3.3模型调优3.3.1决策树深度(预剪枝)3.3.2选取部分特
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- 3D 场景模拟 2D 碰撞玩法的方案
长脖鹿Johnny
数学算法3d游戏游戏引擎算法几何学
目录方法概述顶点到平面的垂直投影求解最小降维OBB主成分分析(PCA)协方差矩阵求矩阵特征值Jacobi方法OBB拉伸方法对于类似《密特罗德生存恐惧》和《暗影火炬城》这样3D场景,但玩法还是2D卷轴动作平台跳跃(类银河恶魔城)的游戏,如果想要让碰撞检测更符合视觉直觉,需要采用3D碰撞体来模拟2D碰撞。本文将介绍一种实现方案。方法概述为了简化碰撞计算,原碰撞体(如武器的碰撞)只使用长方体(OBB)和
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 线性代数学习笔记8-4:正定矩阵、二次型的几何意义、配方法与消元法的联系、最小二乘法与半正定矩阵A^T A
Insomnia_X
线性代数学习笔记线性代数矩阵学习
正定矩阵Positivedefinitematrice之前说过,正定矩阵是一类特殊的对称矩阵:正定矩阵满足对称矩阵的特性(特征值为实数并且拥有一套正交特征向量、正/负主元的数目等于正/负特征值的数目)另外,正定矩阵还具有更好的性质(所有特征值都为正实数、所有主元都为正实数、左上角的所有任意k阶(10(x≠0)\mathbf{x}^{T}\boldsymbol{A}\mathbf{x}>0\quad
- ClickHouse 二进制特征值怎么转化为字符串
树下水月
clickhouse
要将二进制特征值转化为字符串,可以使用以下方法:1.使用base64编码base64是一种将二进制数据编码为ASCII字符串的方法。在ClickHouse中,可以使用函数base64Encode()来将二进制特征值转化为base64编码的字符串。例如:SELECTbase64Encode(feature)FROMmy_table;2.使用hex编码hex是一种将二进制数据转化为十六进制字符串的方法
- 线性代数——特征值与特征向量的性质
lwh 98+106
线性代数算法机器学习
(1)设A为方阵,则A与ATA^{T}AT有相同的特征值。此处用到了两个关键性质,一:单位阵的转置为其本身,二:转置并不改变行列式的值。(2):设n阶方阵A=(aija_{ij}aij)的n个特征值为λ1\lambda_{1}λ1,λ2\lambda_{2}λ2,…λn\lambda_{n}λn,则λ1+λ2+λ3+...λn=a11+a22+a33+...+ann\lambda_{1}+\lam
- 线性代数-MIT 18.06-6(a)
儒雅的钓翁
数学基础线性代数矩阵机器学习
文章目录26.对称矩阵及正定性对称矩阵对称矩阵的特性:矩阵分解(谱定理)定理证明和复数推广对称矩阵和投影矩阵正定性性质1性质227.复数矩阵和快速傅里叶变换复数向量复数矩阵对称性正交性傅里叶矩阵快速傅里叶变换本文在学习《麻省理工公开课线性代数MIT18.06LinearAlgebra》总结反思形成视频链接:MITB站视频笔记部分:总结参考子实26.对称矩阵及正定性对称矩阵对称矩阵的特性:特征值为实
- PCL 点云ISS关键点提取算法
自动驾驶探索站
C++点云处理基础教程PCL特征提取关键点提取
目录一、概述二、代码示例三、运行结果结果预览接上篇Python点云ISS关键点提取算法一、概述点云ISS关键点(IntrinsicShapeSignatures):利用点云中每个点的局部邻域的协方差矩阵来分析局部几何结构。协方差矩阵的特征值可以揭示局部几何形状的显著性。通过筛选出特征值之间具有显著差异的点,ISS算法能够识别出关键点。参考文献:《IntrinsicShapeSignatures:A
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 每天一个数据分析题(四百九十)- 主成分分析与因子分析
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在主成分分析中,主成分的选择通常是按照()的大小排序来进行的。A.特征值B.特征向量C.协方差矩阵D.相关系数矩阵数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- Halcon区域的灰度特征值
看海听风心情棒
计算机视觉图像处理人工智能
Halcon区域的灰度特征值gray_features算子用于计算指定区域的灰度特征值。其输入是一组区域,每个区域的特征都存储在一组value数组中。典型的基于灰度值的特征如下:(1)area:灰度区域面积。(2)row:中心点的行坐标。(3)colum:中心点的列坐标。(4)ra:椭圆的长轴。(5)rb:椭圆的短轴。(6)phi:等效椭圆的角度。(7)min:灰度的最小值。(8)max:灰度的最
- 微信小程序蓝牙函数流程图
烟雨国度
微信小程序流程图notepad++
当然可以。我会为您创建一个流程图来展示微信小程序蓝牙操作的主要步骤,并列出相应的on和off函数。然后,我会详细解释每个步骤,并在适当的地方与电脑的工作原理进行类比。首先,让我为您创建一个流程图:开始初始化蓝牙适配器搜索蓝牙设备连接到设备获取服务获取特征值读写数据断开连接关闭蓝牙模块结束wx.onBluetoothAdapterStateChangewx.onBluetoothDeviceFoun
- 数学基础(四)
几两春秋梦_
数学基础算法人工智能机器学习
一、特征值与特征向量特征空间:特征向量的应用:特征值表达了重要程度且和特征向量所对应,那么特征值大的就是主要信息了,基于这点我们可以提供各种有价值的信息。二、SVD矩阵分解基变换:特征值分解:SVD:离散型随机变量概率函数(概率质量函数):连续型随机变量似然函数
- Halcon根据特征值选择区域
看海听风心情棒
计算机视觉人工智能图像处理目标跟踪
Halcon根据特征值选择区域关于提取图像的特征,比较常用的一个算子是select_shape算子,它能高效地根据特征提取出符合条件的区域。该算子的原型如下:select_shape(Regions:SelectedRegions:Features,Operation,Min,Max:)参数1和参数2分别表示输入和输出的区域,值得关注的是参数3Features。这里提供了一个包括多种特征参数的列表
- 小程序连接蓝牙
季风
微信小程序微信小程序微信开放平台
小程序蓝牙功能1.授予蓝牙权限2.蓝牙初始化3.监听寻找新设备4.搜索新设备5.建立连接⭐⭐⭐⭐⭐⭐⭐6.监听蓝牙低功耗连接状态改变事件8.监听特征值变化9.发送数据1.授予蓝牙权限//1.蓝牙授权constauthBlue=(callback,initApp)=>{app=initApp;//鉴定是否授权蓝牙wx.getSetting().then(res=>{if(!res.authSetti
- 向量的内积、外积、混合积、行列式,以及它们的几何意义 (还有 数量积、点乘、向量积、叉乘)
shimly123456
数学复习线性代数
参考视频1(数量积向量积混合积内积外积):https://www.bilibili.com/video/BV1kL4y1e78T/?vd_source=7a1a0bc74158c6993c7355c5490fc600参考视频2(线性代数:内积、外积、行列式、特征值):https://www.bilibili.com/video/BV16J411J7yF/?vd_source=7a1a0bc7415
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- C/C++/Cuda不依赖任何三方库求解3x3矩阵的特征值和特征向量
OTZ_2333
c++特征值特征向量cuda
https://www.mpi-hd.mpg.de/personalhomes/globes/3x3/适用于C/C++下载dsyevv3-C-1.1.tar.gz采用LGPL协议,不适合商业开发https://github.com/PointCloudLibrary/pcl/blob/master/cuda/common/include/pcl/cuda/common/eigen.h适用于Cuda
- Sparse Principal Component Analysis via Rotation and Truncation
馒头and花卷
SPCArt算法,利用旋转(正交变换更为恰当,因为没有体现出旋转这个过程),交替迭代求解sparsePCA。对以往一些SPCA算法复杂度的总结在这里插入图片描述注:是选取的主成分数目,为迭代次数,为样本维度,为样本数目。本文算法,需要先进行SVD,并未在上表中给出。Notation在这里插入图片描述论文概述就是普通PCA的前个载荷向量(loadings,按照特征值降序排列)也是彼此正交的,张成同一
- 《深度学习》阅读笔记
林子闲_5f12
chapter22.4线性相关和生成子空间一组向量的生成子空间:原始向量线性组合后能到达的点的所组成的空间的集合列向量的冗余称为线性相关,列向量线性相关的方阵称为奇异矩阵。2.5范数范数常被用于衡量向量的大小。L2范数即机器学习中常用的MSE,但在原点处增长太缓慢。当0和非0元素间的差异非常重要时,使用L1范数。衡量矩阵的大小:frobenius范数2.6特征分解由矩阵的特征值定义可以推得正定:所
- 线性代数第9版英文pdf_线性代数(英文版·第9版)
weixin_39726044
线性代数第9版英文pdf
《线性代数(英文版·第9版)》结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题。StevenJ.Leon1971年于密歇根州立大学数学系获得博士学位,现为马萨诸塞大学达特茅斯分校数学系首席教授,
- 矩阵迹(trace), 行列式(determinate)(转载)
TanJXzzZ
线性代数矩阵机器学习
1.迹(trace)矩阵的迹(trace)表示矩阵AAA主对角线所有元素的和迹的来源最根本的应该就是迹和特征值的和相等。因为特征值如此重要,所以才定义了迹。离开了这一点,我觉得迹也就失去了立足点。迹与特征值一直在用迹等于特征值的和来求特征值,但从来没有想过二者究竟是怎么联系起来的。没事儿就重新推了一遍。一元二次方程的根与系数的关系先看一元二次方程。推广至一元n次方程特征值分开来写就是:其实质也是一
- 矩阵迹(trace), 行列式(determinate)
Anne033
BasicMath
1.迹(trace)矩阵的迹(trace)表示矩阵AAA主对角线所有元素的和迹的来源最根本的应该就是迹和特征值的和相等。因为特征值如此重要,所以才定义了迹。离开了这一点,我觉得迹也就失去了立足点。迹与特征值一直在用迹等于特征值的和来求特征值,但从来没有想过二者究竟是怎么联系起来的。没事儿就重新推了一遍。一元二次方程的根与系数的关系先看一元二次方程。推广至一元n次方程特征值分开来写就是:其实质也是一
- 2021-06-20
大耳汪
文献学习笔记FeatureselectionusingLinearDiscriminantAnalysisforbreastcancerdataset算法步骤:Step1:下载数据集;Step2:计算数据集中每个类中每个属性的平均值得到平均值向量。(样本总值/样本总数);Step3:计算类内的散布矩阵Sj;Step4:计算类间散布矩阵Sb;Step5:计算特征值和特征向量;Step6:将特征值存储
- 第三周_循环_数字特征
掌灬纹
对数字求特征值是常用的编码算法,奇偶特征是一种简单的特征值。对于一个整数,从个位开始对每一位数字编号,个位是1号,十位是2号,以此类推。这个整数在第n位上的数字记作x,如果x和n的奇偶性相同,则记下一个1,否则记下一个0。按照整数的顺序把对应位的表示奇偶性的0和1都记录下来,就形成了一个二进制数字。比如,对于342315,这个二进制数字就是001101。输入样例:342315输出样例:13这个题是
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象