- 三对角线型行列式的求法
Mr-Apple
笔记线性代数矩阵算法
三对角线型行列式摘要典型例题练习题参考答案摘要笔者在复习高等代数行列式这章时,发现三对角行列式问题是行列式计算中经常出现的一类行列式,部分考研院校也曾直接出过三对角行列式的计算,亦或是三对角行列式的变体问题.本文主要介绍了一种通常情况下三对角行列式的解法,即采用特征根法来求解行列式的通项公式.例1:计算nnn阶行列式(ac≠0)(ac\neq0)(ac=0)Dn=∣bc0…000abc…0000
- 高等代数精解【9】
叶绿先锋
基础数学与应用数学线性代数矩阵
文章目录向量空间与矩阵矩阵的行列式矩阵A的秩保持不变方阵的行列式线性无关的条件1.线性组合为零向量的唯一性2.矩阵的秩3.几何解释(对于二维和三维空间)4.行列式(对于方阵)总结矩阵的非零子式基础重要性例子注意事项非奇异矩阵(也称为可逆矩阵或满秩矩阵)定义性质例子结论逆矩阵的计算高斯-约旦消元法Julia代码使用伴随矩阵和行列式的倒数来计算逆矩阵参考文献向量空间与矩阵矩阵的行列式矩阵A的秩保持不变
- 高等代数理论基础9:复系数与实系数多项式
溺于恐
复系数与实系数多项式代数基本定理定理:每个次数的复系数多项式在复数域中有一根等价叙述:每个次数的复系数多项式,在复数域上一定有一个一次因式注:由定理可知复数域上所有次数大于1的多项式全是可约的,即不可约多项式只有一次多项式复系数多项式因式分解定理定理:每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积复系数多项式具有标准分解式其中是不同的复数,标准分解式说明每个n次复系数多项式恰有n
- 线性变换零化多项式和最小多项式的概念和性质
patrickpdx
矩阵论
摘自邱维声《高等代数(下)》Chapter10.2,Page270摘自邱维声《高等代数(下)》Chapter10.3,Page276辨析摘自TheLinearAlgebraaBeginningGraduateStudentOughttoKnow(SecondEdition)JonathanS.GolanChapter12,Page249最小多项式的唯一性:零化多项式和最小多项式的关系:零化多项式是
- 高等代数8-1 λ-矩阵
GavinLinxs
高等代数线性代数
λ−\lambda-λ−矩阵 如果一个矩阵的元素是一元多项式环F[λ]\mathbbF[\lambda]F[λ]上的元素,那么这个矩阵就称为λ−\lambda-λ−矩阵.也就是A(λ)=(a11(λ)⋯a1n(λ)⋮⋱⋮as1(λ)⋯asn(λ)).\bmA(\lambda)=\begin{pmatrix}a_{11}(\lambda)&\cdots&a_{1n}(\lambda)\\\vdot
- 憨逼的考研日记(一)
星空_59e5
慢慢的,活成了自己最讨厌的样子(序言,本人今年大四毕业,三月份到八月份一直在小城单位工作,工资在平均7000左右。九月份回学校二战,金融跨考数学,目标某985。复习进度,数学分析复习到最后两章节,高等代数基础复习到第六章,共十章。政治英语没复习,还有十四天考试,去年凉,今年凉凉!)武汉的冬天真的有点冷,早上六点多脚蹬了一下墙,墙上留下了一个洞,我自己也醒了,瞄了一眼落地窗,漆黑黑的,等天亮了,在起
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 高等代数理论基础61:欧几里得空间
溺于恐
欧几里得空间欧几里得空间定义:设V是实数域R上一线性空间,在V上定义一个二元实函数,称为内积,记作,具有以下性质:1.2.3.4.其中是V中任意向量,k为任意实数,这样的线性空间V称为欧几里得空间注:1.欧几里得空间可以是有限维的,也可以是无限维的2.几何空间中向量的全体构成一个欧几里得空间例:1.线性空间中,对向量,定义内积构成一个欧几里得空间2.在闭区间上的所有实连续函数所成的空间中,对函数定
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 常系数微分方程组的V函数构造定理的解释
a03910
笔记
这是王高雄里的常微分方程里的二次型V函数的构造…一节的定理,定正矩阵,这个书里没注意到在哪,不过在高等代数中就是正定矩阵的意思,第二个划线部分矩阵里的微分运算,也是没见过的,看起来很有意思,但是原因呢?之前在证明刘维尔公式的时候有行列式求导运算,现在又有矩阵求导,其实没有特别的理由,就当作是一般的函数乘积求导而已,不过对于矩阵,只需要看作是n^2维向量值函数而已,然后按照数学分析中的多元函数微分即
- 基础数学知识是财务自由的保障
烨子墨
生活中,其实可以用简单的数学符号表示。我所强调的“什么更重要”,其实就是一个不等号“>”。比如:注意力>时间>金钱比如;人>内容>PPT图片发自App除了不等号之外,+-*/就已经足够了,其他多是多余的,让我们慢慢走近化繁为简的未来时代!你不必是一个天才。巴菲特说:“如果成为一个伟大的投资者需要积分或高等代数的知识,那我只能回去送报纸了。”巴菲特认为,现代金融理论对经济学家是有用的,但对于我们其余
- 2018-09-26
yeshan333
体验markdown添加链接我的博客添加图片百度上找的一级引用要判断一个人是否真正聪明,那就要看他能否根本不用动手,而工作却又能完成。二级引用在C++里,想搬起石头砸自己的脚更为困难了。不过一旦你真这么做了,整条腿都得报销!列表的使用一级列表pythonJavac++多级列表数学分析高等代数解析几何插入代码行内代码printf("helloworld");块代码,每行代码前四个空格或一个tabWo
- 做完这些_成为机器学习方面的专家
DARRENANJIAN
FWI思考与总结机器学习人工智能
简单记个帖子,用来记录学习机器学习的路线图1.数学分析,高等代数,概率论这三大件不多说,基础中的基础.2.对于编程工具,b站上500集的python教程---python面向对象编程五部曲(从零到就业).3.对于机器学习的理论板块,推荐b站up主---啥都会一点的研究生,里面有一个吴恩达最新版的教学视频,欢迎学习.接着为了继续学习理论板块,推荐看几本机器学习的书籍,网上资源很多内容应该都差不多,主
- Day26 大学专业怎么选? ——理科《高考》
邱真一
理科:注重理论研究,不太考虑应用实践,非常适合脑子好使、数理化高分的人学习。理科主要分为数理化生,和高中类似,但课业内容会从新手村调成了地狱模式。数学系数学系听起来就是那种高考数学145分的人才会选的系,他们是众人眼中的学霸,是人群里最健硕的大腿。【学习内容】数学系每天都是数学课:高等代数、数学分析、常微分方程、复变函数、泛函分析、拓扑学...随便讲一讲都能三天三夜不带重样的,非常充实。他们的日常
- 高等代数理论基础18:Cramer法则
溺于恐
Cramer法则Cramer法则定理:若线性方程组的系数矩阵的行列式,即系数行列式,则线性方程组有且仅有唯一解,且解可通过系数表为其中是把矩阵A中第j列换成方程组的常数项所成矩阵的行列式,即证明:齐次线性方程组定义:常数项全为零的线性方程组称为齐次线性方程组注:齐次线性方程组总是有解的,就是一个解,称为零解,此外为非零解定理:若齐次线性方程组的系数矩阵的行列式,则它只有零解,若方程组有非零解,则证
- openmp 处理数据竞争的问题 reduction
Eloudy
算法并行运算hpc
类似多线程竞争,需要加锁来保护类似,但实现原理不同,reduction并不会像多线程原子操作那样影响效率,因为它使用了高等代数里的单位元和结合律思想,为每个线程定义一个单位元,开始分段积累运算操作。1,不可避免竞争的示例hello_without_reduction.cpp#include#include#includeintmain(){floatsum=0;omp_set_num_thread
- 高等代数理论基础66:实对称矩阵的标准形
溺于恐
实对称矩阵的标准形对称矩阵的性质引理:设A是实对称矩阵,则A的特征值皆为实数证明:注:对实对称矩阵A,在n维欧氏空间上定义线性变换下的矩阵即A引理:设A是实对称矩阵,,有,或证明:注:引理将实对称矩阵的特性反映到线性变换上对称变换定义:欧氏空间中满足等式的线性变换称为对称变换注:对称变换在标准正交基下的矩阵是实对称矩阵引理:设是线性变换,是-子空间,则也是-子空间证明:引理:设A是实对称矩阵,则中
- 山西大学(双一流)2021–2022 学年第 2 学期-高等代数试卷
小明爱學習
人工智能大数据抽象代数
山西大学2021–2022学年第2学期-高等代数试卷山西大学介绍:山西大学(ShanxiUniversity),位于山西省太原市,是中国办学历史最悠久的高等学府之一,国家“双一流”建设高校,教育部和山西省人民政府共同建设的“部省合建高校”,山西省重点建设大学,是“中西部高校综合实力提升工程”、“中西部高校基础能力建设工程”、教育部基础学科拔尖学生培养计划2.0基地、“111”学科创新引智基地、英才
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第七大题解答
dianyachuo4691
七、(本题10分)设$n$阶复方阵$A$的特征多项式为$f(\lambda)$,复系数多项式$g(\lambda)$满足$(f(\lambda),g'(\lambda))=1$.证明:$A$可对角化的充要条件是$g(A)$可对角化.证明先证必要性.设$A$可对角化,即存在非异阵$P$,使得$P^{-1}AP=\Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\c
- matlab产生过渡矩阵,浅谈向量空间和矩阵
布拉格小鸽子
matlab产生过渡矩阵
前言:和很多考研的研友交流发现很多人对线性代数抑或是高等代数中的向量空间和矩阵的理解不够深入还停留在表面上,这或许与所学专业有关,非数学专业的学生学的课程一般叫做《线性代数》,而我们数学专业的学生学得则是《高等代数》,两门课程前者偏重应用因此省略了很多证明过程,也就省略了很多的来龙去脉,在加上非数学专业的学生数学体系并不完善影响理解各种数学概念,而高等代数是一门抽象性学科这就更加让非数学专业的学生
- 高等代数第3版下 [丘维声 著] 2015年版_全国硕士研究生入学统一考试管理类联考综合能力考试大纲(2021年版)...
weixin_39742392
高等代数第3版下[丘维声著]2015年版
全国硕士研究生入学统一考试管理类专业学位联考综合能力考试大纲(2021年版)Ⅰ.考试性质综合能力考试是为高等院校和科研院所招收管理类专业学位硕士研究生而设置的具有选拨性质的全国联考科目。其目的是科学、公平、有效地测试考生是否具备攻读专业学位所必需的基本素质、一般能力和培养潜能。评价的标准是高等学校本科毕业生所能达到的及格或及格以上水平,以利于各高等学校和科研院所在专业上择优选拔,确保专业学位硕士研
- 《多目标进化优化》笔记
andy.wang0502
机器学习
目前在做多目标优化这块的研究,找了一本郑金华的《多目标进化优化》恶补下基础知识,有需要的可以下载电子版,一起优化优化。在此笔记来督促自己的科研进度,有个输出的过程,也方便和各位同方向的同学们一起交流探讨!多目标优化的基础知识:《高等代数》、《矩阵分析》和《凸优化》等基础数学的内容。主要分为多目标进化优化基础、多目标帕累托最优解集构造方法、多目标进化群体的分布性、多目标进化算法的收敛性、多目标进化算
- 矩阵乘法c语言 2*3,2*3和2*2矩阵乘法公式
沐雲閣主 荻生
矩阵乘法c语言2*3
3*3矩阵与3*2矩阵乘法公式3*3矩阵与3*2矩阵相乘结果:AB=aA+bB+cCaD+bE+cFdA+eB+fCdD+eE+fFgA+hB+iCgD+hE+iFA=abcdefghiB=ADBECF扩展资料:矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。2*3矩阵与2*2矩阵乘积的详细解法两个矩阵相乘,前者的列数应当等于后者的行数所以2*3矩阵显然不能和2*2矩阵相乘而2*2
- 数学专业课程《实变函数论》学习总结
萝卜丝皮尔
统计学数学
我觉得我们学院的老师不是在给我们传授各种数学知识,而是在告诉我们一个道理:你的能量超乎你想象……何出此言?自打入院以来,别人学“高等数学”,我们学“数学分析”;别人学“线性代数”,我们学“高等代数”,然后,解析几何,常微分方程(英文教学),矩阵计算(又称数值线性代数,双语教学),概率论与数理统计(峁诗松老师的教材,老厚一本),数值分析,等等未完待续吧我以为我再也学不会《数学分析》了,直到遇到了《实
- 高等代数 :1 线性方程组的解法
南村少年
高等代数线性代数
1线性方程组的解法1.1解线性方程组的矩阵消元法1、线性方程组:左端为未知量x的一次齐次式,右端是常数。关键词:系数、常数项、n元线性方程组、解集2、线性方程组的初等变换:1)把一个方程的倍数加到另一个方程上;2)互换两个方程位置;3)用一个非零数乘其中一个方程3、关键词:阶梯型方程组、简化阶梯型方程组、增广矩阵、系数矩阵、零矩阵、方阵、m级矩阵(方阵)、矩阵的初等变换4、阶梯型矩阵:1)零行在下
- 数学建模|极其不愿意上的一门课
曼珠沙华薇薇
大一,别人学高数,我们学数学分析;别人学线性代数,我们学高等代数!反正我们学的都是别人不知道的数学!大二,我们学离散数学,运筹学,概率论。大三一学期,我们学,常微分方程!二学期,我们学数学建模!在别人早已告别数学的时候,我们依然在学这些砸凑的数学!枯燥,无聊!明明很简单的数学问题,非要建立一个模型来求解!真的烦!烦自己为什么要选个数学专业!现在才会这么痛苦,这么无助的学这自己不喜欢的课!好想毕业啊
- 数据结构和算法--Java实现矩阵
挨踢SuperMan
数据结构和算法数据结构和算法矩阵java
相信朋友们对矩阵应该不陌生,它贯穿了几乎所有计算机应用数学的所有课程。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。下面我们简单复习下。什么是矩阵1.矩阵定义在数学中,矩阵(Matrix)是一个按照长方阵列排列的实数或复数的集合,最早来自于方程组的系数及常数所构成的方阵。由m×n个数aij排成的m行n列的数表称为m行n列的矩阵,简称m×n矩阵。记作:图1矩阵这m×n个数称为矩阵A
- 3.3 求高等代数问题
哥是八路
3.3.1解方程解一般的一元一次和一元二次方程解方程,和,我们首先需要把方程化成一般形式,然后带入solve()。>>>fromsympyimport*>>>x=Symbol('x')>>>solve(x-5-7)[12]>>>solve(x**2-5*x-7)[5/2+sqrt(53)/2,-sqrt(53)/2+5/2]>>>pprint(solve(x**2+x+1))#求解带复根的一元二次
- 北京大学计算机801考试大纲,2019年中国科学院大学801高等代数考研初试大纲
茸茸君
北京大学计算机801考试大纲
中国科学院大学硕士研究生入学考试《高等代数》考试大纲本《高等代数》考试大纲适用于中国科学院大学数学和系统科学等学科各专业硕士研究生入学考试。高等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包括多项式、行列式和线性方程组、矩阵及其标准形、特征值和特征向量、线性变换和矩阵范数。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。一
- 高斯消元法的MATLAB实现
Li_Y_P
线性代数矩阵numpy
这是一个基于最大主元的高斯消元法的matlab实现,代码中并未考虑对方程组是否有解以及解的唯一性的判断,具体原理可参考高等代数或《MATLAB数学建模》。functions=GuassSolution(A,b)%获取未知数的个数n=length(A(:,1));%寻找每一列的最大主元所在的行数fork=1:n-1[a,t]=max(abs(A(k:n,k)));p=t+k-1;ifa==0err
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/