LA@线性方程组@克拉默克拉姆Cramer法则

文章目录

    • preface
    • 线性方程组
      • 线性方程组的4个矩阵
      • 线性方程组的矩阵乘积形式
      • 线性表出形式
      • 齐次线性方程组
      • 非齐次线性方程组
    • 相关的等价称呼
      • 相容性
      • 矩阵方程和线性方程组
    • Cramer's Rule@克莱姆法则
      • 对于非齐次方程组
      • 对于齐次方程组
    • Cramer法则的局限性
      • Cramer法则的优点
    • 证明Cramer's Rule

preface

  • 许多数学问题都涉及或可转化为求解某个(类)线性方程组.
    • 高斯消元法
      • 齐次线性方程组有非零解
      • 非齐次线性方程组有解的条件
    • 向量组线性相关性和矩阵的秩
      • 揭示方程组解之间的关系,将方程组的有限个解线性表示它的无穷多个解
      • 向量空间的基和坐标

线性方程组

  • 一般的线性方程组由 m m m n n n元一次方程构成:(方程组1)

  • a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{aligned}{} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}&=b_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}&=b_{2}, \\ \vdots&\\ a_{m1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}&=b_{m} \end{aligned} a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=b1,=b2,=bm

  • 特别的, m = n m=n m=n时可以写作:(方程组2)

  • { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \left\{\begin{array}{l} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\ \cdots \cdots \cdots \cdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \end{array}\right. a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,⋯⋯⋯⋯an1x1+an2x2++annxn=bn

线性方程组的4个矩阵

  • 对应与一般线性方程组 m m m n n n元线性方程

  • A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11}& a_{12}& \cdots&a_{1n} \\ a_{21}& a_{22}& \cdots&a_{2n} \\ \vdots& \vdots& &\vdots \\ a_{m1}& a_{m2}& \cdots&a_{mn} \\ \end{pmatrix} A= a11a21am1a12a22am2a1na2namn

  • x = ( x 1 , x 2 , ⋯   , x n ) T = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=(x_1,x_2,\cdots,x_n)^{T}=\begin{pmatrix} x_{1}\\ x_{2}\\ \vdots\\ x_{n} \end{pmatrix} x=(x1,x2,,xn)T= x1x2xn

  • b = ( b 1 , b 2 , ⋯   , b m ) T \boldsymbol{b}=(b_1,b_2,\cdots,b_m)^T b=(b1,b2,,bm)T

  • B = ( A ∣ b ) = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) B=(A|b)=\begin{pmatrix} a_{11}& a_{12}& \cdots&a_{1n}&b_1 \\ a_{21}& a_{22}& \cdots&a_{2n} &b_2\\ \vdots& \vdots& &\vdots &\vdots\\ a_{m1}& a_{m2}& \cdots&a_{mn}&b_m \\ \end{pmatrix} B=(Ab)= a11a21am1a12a22am2a1na2namnb1b2bm

  • 其中 A A A称为线性方程组的系数矩阵

  • x \boldsymbol{x} x称为未知数矩阵

  • b \bold{b} b称为常数项矩阵

  • B \bold{B} B称为增广矩阵,有时记为 A ‾ \overline{A} A

线性方程组的矩阵乘积形式

  • A x = b \bold{Ax=b} Ax=b,其中 x , b \bold{x,b} x,b是同维的列向量,因此也称为线性方程组的向量方程形式

线性表出形式

  • A \bold{A} A分块( A = ( α 1 , ⋯   , α n ) \bold{A}=(\alpha_1,\cdots,\alpha_n) A=(α1,,αn)),把 x \bold{x} x按行分块(每块一个元素),则由分块矩阵的乘法有

    • ( α 1 α 2 ⋯ α n ) ( x 1 x 2 ⋮ x n ) \begin{pmatrix} \alpha_1&\alpha_2&\cdots&\alpha_n \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} (α1α2αn) x1x2xn

    • x 1 α 1 + ⋯ + x n α n = b x_1\alpha_{1}+\cdots+x_n\alpha_n=\bold{b} x1α1++xnαn=b,即 ∑ i = 1 n x i α i = b \sum_{i=1}^{n}x_i\alpha_i=\bold{b} i=1nxiαi=b

齐次线性方程组

  • b = 0 \bold{b={0}} b=0时,即 b i , i = 1 , 2 , ⋯   , n b_i,i=1,2,\cdots,n bi,i=1,2,,n不全为0,方程组称为 n n n齐次方程组

非齐次线性方程组

  • b = 0 \bold{b={0}} b=0,即, ∏ i = 1 n b i ≠ 0 \prod_{i=1}^{n}b_i\neq{0} i=1nbi=0称为 n n n非齐次线性方程组

相关的等价称呼

  • 线性方程组可以简称为线性方程
  • 线性方程组的也可以成为解向量

相容性

  • 线性方程组有解,则称其是相容的,否则是不相容的

矩阵方程和线性方程组

  • 求解线性方程组是线性代数中最重要的问题之一
    • 线性方程组可以用矩阵形式表示为 A x = b Ax=b Ax=b
      • 其中 A A A是矩阵
      • x , b x,b x,b是列向量
    • 矩阵方程的形式则可能复杂的多,一种常见的简单形式是 A X = B AX=B AX=B
      • 其中 A , X , B A,X,B A,X,B均为矩阵
      • 可见线性方程组 A x = b Ax=b Ax=b是矩阵方程组的一种特例类型
      • 在矩阵A可逆的情况下, A X = B AX=B AX=B可以通过矩阵初等行变换进行求解
        • 这种情况下, X = A − 1 B X=A^{-1}B X=A1B,可以由矩阵 ( A ∣ B ) (A|B) (AB)进行初等行变换,将其转换为 ( E ∣ A − 1 B ) (E|A^{-1}B) (EA1B),从而读出矩阵 A X = B AX=B AX=B的方程解矩阵 A − 1 B A^{-1}B A1B

Cramer’s Rule@克莱姆法则

  • Cramer法则可以用来判断并求解方程组2( A A A是方阵时的情况)
  • 该方法是利用行列式解决线性方程组的应用

对于非齐次方程组

  • 若方程组2是非齐次线性方程组,且 ∣ A i ∣ ≠ 0 |A_i|\neq{0} Ai=0,则方程组有唯一解,且是非零解:

    • x i = ∣ A i ∣ ∣ A ∣ , i = 1 , 2 , ⋯ n x_i=\frac{|A_i|}{|A|},i=1,2,\cdots{n} xi=AAi,i=1,2,n

    • 其中 ∣ A i ∣ |A_i| Ai ∣ A ∣ |A| A中,第 i i i列元素替换为方程组右端的常数项 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn所构成的行列式

      • 或者说: A i ( i = 1 , 2 , ⋯   , n ) A_i(i=1,2,\cdots,n) Ai(i=1,2,,n)是把系数矩阵A中第 i i i列的元素用方程组右端的常数项代替后所得到的 n n n阶矩阵

      • A i = ( a 11 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ) A_{i}=\begin{pmatrix} a_{11}&\cdots&a_{1,i-1}&b_{1}&a_{1,i+1}&\cdots&a_{1n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&\cdots&a_{n,i-1}&b_{n}&a_{n,i+1}&\cdots&a_{nn}\\ \end{pmatrix} Ai= a11an1a1,i1an,i1b1bna1,i+1an,i+1a1nann

    • 唯一解是非零解:因为零解不可能满足非齐次方程组

对于齐次方程组

  • 当方程组2是齐次方程组时,用矩阵乘法的形式可以书写为 A x = 0 \bold{Ax=0} Ax=0

  • ∣ A ∣ ≠ 0 |A|\neq{0} A=0充分必要条件是方程组有唯一解,而且是零解(由0构成的解向量或解矩阵)

  • notes:

    • ∣ A ∣ = 0 |A|=0 A=0表示 A A A不是满秩的,具有一定的自由度,对应的线性方程组可能更多的解
    • 方阵的可以描述自由度大小
    • 系数矩阵是的满秩方阵的线性方程组具有的解有且只有1个,cramer法则给出了唯一解的具体计算公式

Cramer法则的局限性

  • Cramer法则仅适用于方程组2这类未知数个数和方程个数相等的情况下,此时可以对系数矩阵(方阵)求行列式,来判断方程组解的情况
    • 当系数矩阵的行列式 ∣ A ∣ ≠ 0 |A|\neq{0} A=0时可以给出具体的唯一解;(但是实际应用中一般不采用该法,因为需要计算较多的行列式,而更多的采用高斯消元法或者说初等矩阵变换法)
    • ∣ A ∣ = 0 |A|=0 A=0时,方程组可能是无解的,也可能是有无穷多解(若要更具体的判断,需要利用其他方法,例如使用更加通用的基于初等变换法的"线性方程组有解判定定理")
  • Cramer法是行列式的一个应用,而Cramer法则的证明则是矩阵逆的应用,他们都离不开方阵
  • 如果要分析更一般的线性方程组,需要借助线性方程组解与矩阵的秩的关系(线性方程组有解判定定理)

Cramer法则的优点

  • 如果仅仅需要讨论一个系数矩阵为带参数(设为 λ \lambda λ)方阵的线性方程组的解的情况,使用Cramer法则可以起到简化分类讨论过程

    • 记系数矩阵为 A = A ( λ ) A=A(\lambda) A=A(λ)

    • 先计算 ∣ A ∣ ≠ 0 |A|\neq{0} A=0下,参数 λ \lambda λ的取值情况,若解集可表示为: λ ≠ λ i \lambda\neq\lambda_i λ=λi, i = 1 , 2 ⋯   , t i=1,2\cdots,t i=1,2,t,它们对应方程组有唯一解

    • 再分别利用初等变换法计算 λ = λ i \lambda=\lambda_i λ=λi下方程组的解的情况(可能对应无解或者有无穷多解)

证明Cramer’s Rule

  • 主要用到矩阵的逆,伴随矩阵,行列式降阶展公式和代数余子式的逆用

  • 由线性方程组 A x = b , ∣ A ∣ ≠ 0 Ax=b,|A|\neq{0} Ax=b,A=0

    • A − 1 A^{-1} A1存在,对 A x = b Ax=b Ax=b两边左乘 A − 1 A^{-1} A1,得到 x = A − 1 b = ( 1 ∣ A ∣ A ∗ ) b \boldsymbol{x}=A^{-1}b=(\frac{1}{|A|}A^{*})b x=A1b=(A1A)b

      • P = ( A ∗ ) b , x ∈ R n × 1 P=(A^*)\boldsymbol{b},\boldsymbol{x}\in\mathbb{R}^{n\times{1}} P=(A)b,xRn×1
    • 由结合律 : x = 1 ∣ A ∣ ( ( A ∗ ) b ) = 1 ∣ A ∣ ( ( A i j ) n × n T b ) x j = 1 ∣ A ∣ ( ∑ k = 1 n b k A k j ) = 1 ∣ A ∣ ∣ A j ∣ , j = 1 , 2 , ⋯   , n 由结合律:\boldsymbol{x}=\frac{1}{|A|}((A^{*})\bold{b}) =\frac{1}{|A|}((A_{ij})^T_{n\times{n}}\bold{b}) \\ x_{j}=\frac{1}{|A|}(\sum\limits_{k=1}^{n}b_kA_{kj}) =\frac{1}{|A|}|A_j|,j=1,2,\cdots,n 由结合律:x=A1((A)b)=A1((Aij)n×nTb)xj=A1(k=1nbkAkj)=A1Aj,j=1,2,,n

      • 其中 A i j A_{ij} Aij表示元素矩阵A的元素 a i j a_{ij} aij的代数余子式
      • 其中 ∣ A j ∣ |A_j| Aj ∣ A ∣ |A| A中第 j j j列元素替换为方程组 A x = b A\boldsymbol{x}=\boldsymbol{b} Ax=b右端的常数项 b j b_j bj所取构成的行列式 j = 1 , 2 , ⋯   , n j=1,2,\cdots,n j=1,2,,n;不妨称之为[替换常数项 b j b_j bj后的n阶行列式],并且 ∣ A j ∣ = ∑ k = 1 n b k A k j |A_j|=\sum_{k=1}^{n}b_{k}A_{kj} Aj=k=1nbkAkj
    • A ∗ = A i j = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) b = ( b 1 b 2 ⋮ b n ) P = ( A ∗ ) b p i = ∑ k = 1 n A k i b k A^*=A_{ij}=\begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&&&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn} \end{pmatrix} \\ \boldsymbol{b}=\begin{pmatrix} b_{1}\\ b_{2}\\ \vdots\\ b_{n} \end{pmatrix} \\ \boldsymbol{P}=(A^*)\boldsymbol{b} \\ p_i=\sum_{k=1}^{n}A_{ki}b_{k} A=Aij= A11A12A1nA21A22A2nAn1An2Ann b= b1b2bn P=(A)bpi=k=1nAkibk

    • x 1 , x 2 \boldsymbol{x_1},\boldsymbol{x_2} x1,x2均为 A x = b Ax=b Ax=b的解向量,则 A x 1 = A x 2 = b Ax_1=Ax_2=b Ax1=Ax2=b

      • A x 1 = A x 2 Ax_1=Ax_2 Ax1=Ax2两边同时乘以 A − 1 A^{-1} A1
      • 得到 x 1 = x 2 x_1=x_2 x1=x2
      • 说明 A x = b Ax=b Ax=b的解具有唯一性

你可能感兴趣的:(线性代数)