- CTF 竞赛密码学方向学习路径规划
David Max
CTF学习笔记密码学ctf信息安全
目录计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装WattToolkit(Steam++)、机场代理Scoop(Windows用户可选)常用Python库SageMathLinux小工具yafuOpenSSLMarkdown编程基础Python其他编程语言、算法与数据结构(可选)数学基础离散数学与抽象代数复杂性分析密码学的正式学习兴趣的培养做题小技巧系统学习需要了解并
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 幂等性非侵入式实现
十一技术斩
面试mysqljava后端数据库
幂等性今天我们来谈谈什么是幂等性?引用百度百科的解析如下:幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函
- 智能机器人与旋量代数(3)
Metaphysicist.
智能机器人与旋量代数机器人
Chapt2.李群李代数的基本理论2.1群论的基本概念(TheTheoryofGroups)群的概念最初是由19世纪的数学家伽罗瓦提出的,群是抽象代数中的一类结构,,它与研究对称性紧密相关,如代数方程的对称性以及几何图形的对称性(同样的群甚至可以表达几个不同种类物体的对称性)。通常可以认为群是所有对称运算的集合,群论从本质上来讲就是一种描述各种各样的对称性的数学工具。定义2.1群是指可对其元素gg
- 【无标题】
数学专业的小白
考研
考研过了一周,是不是该准备研究生复试了?结合自身经历谈谈研究生复试需要注意的事项:注意复试科目和形式每个学校复试科目和形式都大不一样,以数学专业举例,有的学校复试科目较多,如复变函数、实变函数、抽象代数、泛函分析()等;有的学校只需复试一个科目(必选一个科目)。现在估计是线下面试为主了,有的学校要求制作PPT或者简历,这个必须注意,PPT和简历上写的每个内容,都要经得起推敲,问起来必须能够回答出来
- 格密码基础:q-ary格
唠嗑!
格密码格密码线性代数格基
目录一.格密码的重要性二.格密码基础2.1格点的另一种理解方式三.q-ary格3.1q-ary垂直格3.2q-ary格3.3二者结合四.论文中的q-ary格4.1定理14.2定理24.3定理3一.格密码的重要性格密码的基础是研究格点上的困难问题,这种格点使用抽象代数的观点则是上的子群。格密码近些年非常火热,主要由于以下几点:抗量子攻击。基于传统数论的公钥密码系统是无法抵抗量子攻击的,这也是格密码最
- 如何保证分布式情况下的幂等性
豆奶快攻
设计模式设计Java分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 线性代数一
刘瞧瞧
线性代数
每日学习刘瞧翘线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。概念线性代数是代数学的一个分
- 【密码学】抽象代数——群(学习笔记)
aching_
密码学学习笔记密码学信息安全抽象代数
群1、运算及关系运算的本质:两个元素经过一定的法则得到一个元素。(加减乘除)运算的规律:交换律、结合律、分配律交换律ab=ba结合律a(bc)=(ab)c分配律a∘(b+c)=a∘b+a∘c关系:非空集合A中对两个元素而言的一种性质,使A中任何两个元素,或有这种性质,或没有这种性质,二者必居其一。例:关系为“>”,A中任意两个元素,或大于,或不大于。(总有属于一种)等价关系:非空集合A中定义了关系
- 抽象代数笔记2——群
rsy56640
数学
CSDN前端有毒,Latex写出来排版全乱……………………………………………………………………………………………….群的定义:设GG是一个非空集合,“oo”是GG上的二元代数运算,称为乘法。如果下列条件成立,则称GG对它的乘法“oo”构成一个群(Group)。1.乘法“oo”满足结合律。2.对乘法“oo”,GG中有一个左幺元ee。即∀a∈G,eoa=a∀a∈G,eoa=a3.对乘法“oo”,GG中
- 【考研—密码学数论基础】环、群、域、多项式运算
GoesM
考研--密码学与网络安全c++数论考研密码学抽象代数
注:下述笔记根据学习通公开课程《数学的思维方式与创新》,部分内容并非严谨数学定义,个人理解居多。注2:第一遍学的时候理解得太片面了,面试被问到了才意识到理解得有问题,特此重新更正Pre:理解一些问题群?环?域?这些概念是在聊什么?它们都相当于是一种特殊的集合。抽象代数中的加法?乘法?本质是:定义新运算。它其实不同于我们平时知道的乘法和加法,但在逻辑上有一些相似之处。单位元:在集合中作乘法运算,类似
- 数据幂等
carl_zhao
在系统设计的时候,操作幂等设计是一点需要考虑的点。幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。用数学表达式来表达的话:f(x)=f(f(x))1、数据库幂等幂等性是后续多余的调用不会对系统数据的一致性进行破坏。在数据库操作一般会有增、删、查、改4类操作。下面我们来看这4
- 抽象代数 04.07 Jordan-Holder定理
longji
抽象代数抽象代数Jordan-Holder定理
http://www.icourses.cn南开大学《抽象代数》§4.7Jordan-Holder定理{\color{blue}{\text{\S4.7Jordan-Holder定理}}}§4.7Jordan-Holder定理可解群存在次正规序列使得因子都是素数阶循环群,且所有因子的阶的乘积为群G的阶。定义4.7.1.称群G的次正规序列{\color{blue}定义4.7.1.}称群G的次正规序列
- 分布式服务的幂等性的个人见解
是王威啊
概念幂等的概念来自于抽象代数,比如对于一元函数来说,满足如下条件:f(f(x))=f(x)即可称为满足幂等性。在计算机科学中,一个操作多次执行和一次执行的影响相同,这样的操作即符合幂等性。在分布式的系统中,服务消费方调用服务提供方的接口,多次调用的结果应该与一次调用的结果相同,这就是分布式环境下的幂等性的语义。为什么都在强调幂等性?因为分布式服务系统有可能因为网络不稳定原因导致一个服务的接口被重复
- 抽象代数简介
景知育德
集合交集·并集·差集在中学阶段就学习过集合,部分内容不再赘述。以下是交集、并集、差集的概念:幂集设是一个集合,那么的所有子集为成员构成的几何成为是幂集,记作。笛卡尔积设是两个集合,定义集合称为与的笛卡尔积,又称卡氏积,集合积。基数集合中元素个数称为集合的基数,记作。如果是无限的,则,称是无限集,否则是有限集。关系集合中的元素相互之间可能有关系(也可能没有关系)。例如全校的学生构成一个集合,某些学生
- 如何保证分布式情况下的幂等性
Elivis Hu
架构师分布式
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。什么是幂等幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。在编程中⼀个幂等操作的特点是其任意多次执⾏所产⽣的影响均与⼀次执⾏的影响相同。幂等函数,或幂等⽅法,是指可以使⽤相同参数重复执⾏,并能获得相同结果的函数。这
- 【分布式】: 幂等性和实现方式
无难事者若执
分布式架构中间件1024程序员节分布式java
【分布式】:幂等性和实现方式幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“setTrue()”函数就是一个幂等函数,无论多次执
- 抽象代数 01.05 循环群
longji
抽象代数抽象代数循环群
http://www.icourses.cn南开大学《抽象代数》§1.5循环群{\color{blue}\text{\S1.5循环群}}§1.5循环群定义1.5.1由一个元素a反复运算生成的群{\color{blue}定义1.5.1\quad}由一个元素a反复运算生成的群定义1.5.1由一个元素a反复运算生成的群G={an∣n∈Z}\qquadG=\lbracea^n|n\in\Z\rbraceG
- 【抽象代数】同态同构、循环群
karwen(^.^)
抽象代数抽象代数
同态与同构同态定义两个代数系统(A,o),(A‾,o‾)(A,o),(\overline{A},\overline{o})(A,o),(A,o),如果存在映射φ:A→A‾\varphi:A\rightarrow\overline{A}φ:A→A,若对于任意的a,b∈Aa,b\inAa,b∈A,都有φ(aob)=φ(a)o‾φ(b)\varphi(a\o\b)=\varphi(a)\overline
- 矩阵理论名词解释表
qq_34966169
矩阵线性代数
参考书链接:https://pan.baidu.com/s/1uWudKozeTvC_3nREy5hAKQ?pwd=6he0提取码:6he0–来自百度网盘超级会员V5的分享1.复数F实数R和复数C域,不包含其他数域F域(Field)是抽象代数中的一个重要概念,它是一种包含了加法和乘法运算的代数结构。F域是数学中的一种代数结构,通常用于研究线性代数、数论、编码理论、密码学等领域。F域具有以下性质:封
- 我们来谈下高并发和分布式中的幂等处理
java高并发
我们先来谈下幂等的概念抽象概念幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。复制代码在编程中,一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTru
- 接口幂等性总结整理
Mr_Chao3
1、什么是幂等性幂等,英文Idempotence幂等这个词原自数学,幂等性是数学中的一个概念,常见于抽象代数中,表达的是N次变换与1次变换的结果相同;简单来说就是如果方法调用一次和多次产生的效果是相同的,它就具有幂等性。幂等函数或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数,这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。幂等性(Idempotence)本身是一个数
- DH算法原理
spyder_men
DH算法原理DH是Diffie-Hellman的首字母缩写,是Whitefield与MartinHellman在1976年提出了一个的密钥交换协议。我个人倾向于称DH算法为密钥协商协议而RSA算法是密钥交换算法。本篇分为几个部分,第一个部分介绍一下密钥交换的场景;第二部分介绍一下DH算法的的步骤,以及由该算法引出的一些问题;第三部分开始讲数学原理。数学原理可能涉及到数论、抽象代数,本篇尽量在每个公
- 使用ChatGPT进行个性化学习
chatgpt机器学习
推荐:将NSDT场景编辑器加入你的3D工具链3D工具集:NSDT简石数字孪生在这篇文章中,您将发现ChatGPT作为机器学习和数据科学爱好者的个人导师的好处。特别是,您将学习如何让ChatGPT引导你学习抽象代数如何让ChatGPT帮助您准备数据科学面试让我们开始吧。使用ChatGPT作为您的个性化教师概述这篇文章分为三个部分;它们是:在12周内掌握线性代数机器学习面试的自我测验提示提示以增强学习
- 文学的作用
伏晶之心
这些年做个人成长的事情,听了很多人的成长故事。林林总总,奇奇怪怪,意想不到,下限无限。我慢慢开始理解文学的作用。文学就是人生经历、人生故事的数学模型,是一种不同人的人生统计。然后,通过提纯、抽象、文笔加工,变成了精细制作的高信息密度文艺产品,反过来作用于心智,影响具体的人生。如果是每个人的生活是一个具体的数,文学就是代数,关于文学的评论以及美学,就是抽象代数。如果是每个人的生活是具体的传统产业,实
- 向量空间的定义
Obj_Arr
一个向量空间包括三块,基础集,两种二元运算,加法,标量乘。暂且用实数域的符号表示,比较熟悉。然后还必须满足一些性质,基础集关于加法运算构成阿贝尔群,基础集关于标量乘构成一个左作用。结合起来就是向量空间是标量域的R-Mod。也称之为左模。环上的模,就是抽象代数结构环上定义的另一种代数结构,环上的典型的阿贝尔群就是环上的加法子群。左作用,更像是函数作用,要求满足结合性,关于加法的两种分配律,最后是恒等
- 从体育运动来理解数学空间
tiger007lw
还记得刚开始看到什么希尔伯特空间、巴拿赫空间中时,作为一个体育迷和运动爱好者脑中浮现的就是排球场和田径场,然后就是三维坐标构成的现实空间,但是为什么数学上又会有抽象空间,很长一段时间都未明白。后来学了群、环、域抽象代数结构,再重新复习了线性空间后再反过来才逐渐理解了各种不同的数学空间。对一个抽象系统赋予一个看得见、摸得着现实系统进行类比才更容易让人理解,鉴于这是一个如此重要又是许多人都没有明白
- 抽象代数
早安我的猫咪
有限域域是一个可以在其上进行加法、减法、乘法和除法运算而结果不会超出域的集合。如整数集合不是(很明显,使用除法得到的分数或小数已超出整数集合。如果域只包含有限个元素,则称其为有限域。有限域中元素的个数称为有限域的阶。每个有限域的阶必为素数的幂,即有限域的阶可表示为pⁿ(p是素数、n是正整数),该有限域通常称为Galois域(GaloisFields),记为GF(pⁿ)。当n=1时,存在有限域GF(
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep