Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
给定一个完全二叉树,让我们输出二叉树中节点的个数。我们知道一个满二叉树的节点个数是2^k - 1 (k 为二叉树的高度), 我们设定两个标志left 和right,代表当前节点的左侧和右侧的高度是否被计算过,它们通过left和right的值来判断当前子树是否为满二叉树,因为如果为满二叉树,我们就可以用公式计算出它的节点个数,如果left和right的值不相等,我们就递归循环这个过程。代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int countNodes(TreeNode root) {
if(root == null) return 0;
return getCount(root, 0, 0);
}
public int getCount(TreeNode root, int lCount, int rCount) {
if(lCount == 0) {
lCount = 0;
TreeNode cur = root;
while(cur != null) {
lCount ++;
cur = cur.left;
}
}
if(rCount == 0) {
rCount = 0;
TreeNode cur = root;
while(cur != null) {
rCount ++;
cur = cur.right;
}
}
if(lCount == rCount) return (1 << lCount) - 1;
return 1 + getCount(root.left, lCount - 1, 0) + getCount(root.right, 0, rCount - 1);
}
}