- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 【提高+/省选−】洛谷P1495 —— 【模板】中国剩余定理(CRT)/ 曹冲养猪
zbh0604
信息学奥赛扩展欧几里得算法中国剩余定理算法
题目来源P1495【模板】中国剩余定理(CRT)/曹冲养猪-洛谷题目描述自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了。如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头
- 【提高+/省选−】洛谷P1495 —— 【模板】中国剩余定理(CRT)/ 曹冲养猪
CCF_NOI.
信息学奥赛扩展欧几里得算法中国剩余定理(CRT)算法c++数据结构
见:P1495【模板】中国剩余定理(CRT)/曹冲养猪-洛谷题目描述自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了。如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有
- AcWing 204:表达整数的奇怪方式 ← 扩展中国剩余定理
hnjzsyjyj
信息学竞赛#算法数学基础扩展中国剩余定理
【题目来源】https://www.acwing.com/problem/content/206/【题目描述】给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(modai)。【输入格式】第1行包含整数n。第2…n+1行:第i+1行包含两个整数ai和mi,数之间用空格隔开。【输出格式】输出最小非负整数x,如果x不存在,则输出−1。【输入
- 2025年第十六届蓝桥杯省赛B组Java题解【完整、易懂版】
大熊计算机
赛事/证书蓝桥杯java职场和发展
2025年第十六届蓝桥杯省赛B组Java题解题型概览与整体分析题目编号题目名称题型难度核心知识点通过率(预估)A逃离高塔结果填空★☆☆数学规律、模运算95%B消失的蓝宝结果填空★★★同余定理、中国剩余定理45%C电池分组编程题★★☆异或运算性质70%D魔法科考试编程题★★★素数筛、集合去重60%E爆破编程题★★★☆最小生成树、几何计算40%F数组翻转编程题★★☆贪心、数学分析55%G移动距离结果填
- 中国剩余定理
SweetCode
算法python数据结构
中国剩余定理(ChineseRemainderTheorem)详解:从原理到代码实现在数论和计算机科学中,中国剩余定理(CRT)是一种处理多个模运算方程组的强大工具,它不仅用于解线性同余方程组,还广泛应用于密码学、RSA算法、信号处理等领域。本文将从原理讲起,结合例子逐步深入,并提供可运行的代码实现。一、什么是中国剩余定理?中国剩余定理是关于整数同余方程组求解的一条基本定理,它的基本形式如下:定理
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 从零开始学RSA:低加密指数广播攻击
网络安全我来了
Crypto算法python网络安全
(10)低加密指数广播攻击如果选取的加密指数较低,并且使用了相同的加密指数给一个接受者的群发送相同的信息,那么可以进行广播攻击得到明文。适用范围:模数n、密文c不同,明文m、加密指数e相同。一般情况下,e=k(k是题目给出的n和c的组数)。例如:下面的就是e=k=3使用不同的模数n,相同的公钥指数e加密相同的信息。就会得到多个,将视为一个整体M,这就是典型的中国剩余定理适用情况。按照本文的中国剩余
- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 近世代数理论基础7:同余式·中国剩余定理
溺于恐
同余式·中国剩余定理同余式定义:给定整系数多项式,则称同余方程为模m的同余式,若,则称它为n次同余式若,满足,则,b也满足,因而称为该同余式的一个同余解定理:一次同余式,有解,若有解,则有个同余解证明:中国剩余定理定理:设,且两两互素,则同余式组,模有唯一同余解证明:
- python实现中国剩余定理
含泪进厂
python
中国剩余定理又称孙子定理,是数论中一个重要定理。最早可见于我国的数学著作《孙子算经》卷下“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。把这题转化成现代数学问题:求一个数x,该数除以3余2,除以5余3,除以7余2把以上问题转化为一般方程的形式根据中国剩余定理解如下其中python代码实现n=i
- 孙子定理和“物不知数”问题
软件技术爱好者
数学广角随笔数学
孙子定理和“物不知数”问题孙子定理,也称为中国剩余定理或中国余数定理。孙子定理是中国古代求解一次同余式组(见同余)的方法。此定理,在公元5-6世纪的中国南北朝时期的数学家孙子提出的“物不知数”问题可以被视为中国剩余定理的一个应用实例。《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除
- 笔记---中国剩余定理
Die love 6-feet-under
笔记算法c++
全程学自y总AcWing.204.表达整数的奇怪方式给定2n2n2n个整数aaa1,aaa2,…,aaan和mmm1,mmm2,…,mmmn,求一个最小的非负整数xxx,满足∀i∈[1,n],x≡m∀i∈[1,n],x≡m∀i∈[1,n],x≡mi(moda(moda(modai)))。输入格式第1行包含整数nnn。第2…nnn+1行:每iii+1行包含两个整数aaai和mmmi,数之间用空格隔开
- ACM必备知识
Element-YoNg
时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排序,外部排序)数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理)指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示)按位运算(and,or,xor,sh
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- C++ 数论相关题目 表达整数的奇怪方式(中国剩余定理)
伏城无嗔
数论力扣算法笔记c++算法
给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(modai)。输入格式第1行包含整数n。第2…n+1行:每i+1行包含两个整数ai和mi,数之间用空格隔开。输出格式输出最小非负整数x,如果x不存在,则输出−1。数据范围1≤ai≤231−1,0≤mi#includeusingnamespacestd;typedeflonglongLL
- 【数学】一元一次同余方程组、中国剩余定理(CRT)与扩展中国剩余定理(exCRT)
OIer-zyh
数学#数论c++OI数学算法数论
一元一次同余方程组形如{x≡a1(modm1)x≡a2(modm2) ⋮x≡an(modmn)\begin{cases}x\equiva_1\pmod{m_1}\\x\equiva_2\pmod{m_2}\\\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\vdots\\x\equiva_n\pmod{m_n}\end{cases}⎩⎨⎧x≡a1(modm1
- Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
- 数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 基于格理论来破解RSA公钥密码(1)
唠嗑!
格密码密码学网络安全
目录一.介绍二.RSA密码系统2.1生成公私钥2.2加密2.3解密三.中国剩余定理攻击低指数的RSA3.1介绍3.2中国剩余定理四.基于多项式的RSA加密五.小结一.介绍我们生活中常使用的网络浏览器,智能卡片都有RSA公钥密码的影子。从1977年,RSA密码系统提出,五十年来涌现出了大量的攻击算法。Hastad和Coppersmith创新性的用格密码理论来攻击RSA系统,尤其是公开指数较小的时候。
- 中国剩余定理的同态性质(CRT变换的同态性)
咸鱼菲菲
数论基本算法抽象代数同态加密
1、中国剩余定理简介(ChineseRemainderTheory,CRT)中国剩余定理是关于求解一元线性同余方程组的方法,用形式化的描述就是:m1,m2,mnm_1,m_2,m_nm1,m2,mn是两两互素的n个整数,有下面的同余方程组:{x≡a1mod m1x≡a2mod m2...x≡anmod mn(m1,m2,⋯ ,mn)两两互素\left\{\begin{array}{lr}x\
- ACM板子
GGood_Name
cocoamacosobjective-cc++
文章目录板子:初始化:快读:快速幂:GCD/LCM:组合数:欧拉筛:大整数质因数分解:分解质因数:求(1e12)内质数:KMP:最小生成树:最短路LCA查找最近祖先二分图匹配RMQ区间最小值:01字典树:字典树:线段树:最长上升子序列:最长公共子序列:01背包中国剩余定理模板*L**u**c**a**s*定理。扩展Lucas定理hash+二分求最长回文串**尼姆博弈模型**莫队算法权值线段树回文树
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 算法-大数相乘
Aberwang9157
java算法java
解决算法;*1.模拟小学乘法:最简单的乘法竖式手算的累加型;*2.分治乘法:最简单的是Karatsuba乘法,一般化以后有Toom-Cook乘法;*3.快速傅里叶变换FFT:(为了避免精度问题,可以改用快速数论变换FNTT),时间复杂度O(NlgNlglgN)。具体可参照Schönhage–Strassenalgorithm;*4.中国剩余定理:把每个数分解到一些互素的模上,然后每个同余方程对应乘
- 任意模数FTT
YiPeng_Deng
学习小计FFT和NTTfft任意模数fft常数优化
模板题luogu42459次DFT由于在一般的条件下值域大概在102310^{23}1023下,所以找到三个NTT模数,它们的乘积大于102310^{23}1023,求出三个模数下的答案,再用中国剩余定理把它们合并到一起,变成模三个数的乘积下的答案,这就是它的实际答案。一共需要9次DFT,常数比较小,但是9次实在是太慢了。三次变两次由于复数域的神奇性质,我们在FFT的时候可以将计算C(x)=A(x
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多