HDU 3836 —— Equivalent Sets

原题:http://acm.hdu.edu.cn/showproblem.php?pid=3836


题意:问至少要加几条边,使得该图强连通(即图中任意两点都连通);

思路:先求原图的强连通分量,然后进行缩点构建新图,在新图中,求入度 = 0 和 出度 = 0 的个数,两者的最大值即为答案;


#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int maxn = 200000+5;
const int maxm = 500000+5;

int n, m;
int head[maxn], edgenum;
int Stack[maxn], Belong[maxn], DFN[maxn], Low[maxn];
int Time, taj, top;
bool Instack[maxn];
int in[maxn], out[maxn];

struct Edge
{
	int from, to;
	int next;
}edge[maxm];

void Tarjan(int u)
{
	DFN[u] = Low[u] = ++Time;
	Stack[top++] = u;
	Instack[u] = true;
	for(int i = head[u];i != -1;i = edge[i].next)
	{
		int v = edge[i].to;
		if(DFN[v] == -1)
		{			
			Tarjan(v);
			Low[u] = min(Low[u], Low[v]);
		}
		else
		{
			if(Instack[v] && Low[u] > DFN[v])
				Low[u] = DFN[v];
		}
	}
	if(DFN[u] == Low[u])
	{
		taj++;
		while(1)
		{
			int now = Stack[--top];
			Belong[now] = taj;
			Instack[now] = false;
			if(now == u)	break;
		}
	}
}

void add(int u, int v)
{
	edge[edgenum].from = u;
	edge[edgenum].to = v;
	edge[edgenum].next = head[u];
	head[u] = edgenum++;
}

void init()
{
	memset(head, -1, sizeof head);
	edgenum = 0;
	memset(DFN, -1, sizeof DFN);
	memset(Instack, false, sizeof Instack);
	Time = taj = top = 0;
}

int main()
{
	while(~scanf("%d%d", &n, &m))
	{
		init();
		while(m--)
		{
			int u, v;
			scanf("%d%d", &u, &v);
			add(u, v);
		}
		for(int i = 1;i<=n;i++)
		{
			if(DFN[i] == -1)
			Tarjan(i);
		}
		if(taj == 1)
		{
			printf("0\n");
			continue;
		}
		memset(in, 0, sizeof in);
		memset(out, 0, sizeof out);
		for(int i = 0;i<edgenum;i++)
		{
			int u = Belong[edge[i].from];
			int v = Belong[edge[i].to];
			if(u != v)
			{
				out[u]++;
				in[v]++;
			}
		}
		int incnt = 0, outcnt = 0;
		for(int i = 1;i<=taj;i++)
		{
			if(in[i] == 0)	incnt++;
			if(out[i] == 0)	outcnt++;
		}
		printf("%d\n", max(incnt, outcnt));
	}
	return 0;
}


你可能感兴趣的:(强连通)