题意:给定一个有向图,伏地魔在0号节点。城堡在n-1号节点。拆掉每一条路有一些代价,现在询问需要最少代价拆掉最少的边是多少。输出边数。
模型:
最小割找最少边。
状态压缩。。
代码:
//author: CHC //First Edit Time: 2014-11-29 23:36 //Last Edit Time: 2014-11-30 10:17 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <set> #include <vector> #include <map> #include <queue> #include <set> #include <algorithm> #include <limits> using namespace std; typedef long long LL; const int MAXN=1e+4; const int MAXM=1e+6; const int INF = numeric_limits<int>::max(); const LL LL_INF= numeric_limits<LL>::max(); struct Edge { int from,to; LL ci; int next; Edge(){} Edge(int _from,int _to,LL _ci,int _next):from(_from),to(_to),ci(_ci),next(_next){} }e[MAXM]; int head[MAXN],tot; int dis[MAXN]; int top,sta[MAXN],cur[MAXN]; inline void init(){ memset(head,-1,sizeof(head)); tot=0; } inline void AddEdge(int u,int v,LL ci0,LL ci1=0){ e[tot]=Edge(u,v,ci0,head[u]); head[u]=tot++; e[tot]=Edge(v,u,ci1,head[v]); head[v]=tot++; } inline bool bfs(int st,int et){ memset(dis,0,sizeof(dis)); dis[st]=1; queue <int> q; q.push(st); while(!q.empty()){ int now=q.front(); q.pop(); for(int i=head[now];i!=-1;i=e[i].next){ int next=e[i].to; if(e[i].ci&&!dis[next]){ dis[next]=dis[now]+1; if(next==et)return true; q.push(next); } } } return false; } LL Dinic(int st,int et){ LL ans=0; while(bfs(st,et)){ //printf("here\n"); top=0; memcpy(cur,head,sizeof(head)); int u=st,i; while(1){ if(u==et){ int pos; LL minn=LL_INF; //printf("top:%d\n",top); for(i=0;i<top;i++) { if(minn>e[sta[i]].ci){ minn=e[sta[i]].ci; pos=i; } //printf("%d --> %d\n",e[sta[i]].from,e[sta[i]].to); } for(i=0;i<top;i++){ e[sta[i]].ci-=minn; e[sta[i]^1].ci+=minn; } top=pos; u=e[sta[top]].from; ans+=minn; //printf("minn:%d\n\n",minn); } for(i=cur[u];i!=-1;cur[u]=i=e[i].next) if(e[i].ci&&dis[u]+1==dis[e[i].to])break; if(cur[u]!=-1){ sta[top++]=cur[u]; u=e[cur[u]].to; } else { if(top==0)break; dis[u]=0; u=e[sta[--top]].from; } } } return ans; } int main() { int t,cas=0,n,m; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); init(); for(int i=0,x,y,c,d;i<m;i++){ scanf("%d%d%d%d",&x,&y,&c,&d); AddEdge(x,y,(LL)c*100001+1); if(d)AddEdge(y,x,(LL)c*100001+1); } LL ans=Dinic(0,n-1); printf("Case %d: %I64d\n",++cas,ans%100001); } return 0; }