E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
反向传播梯度下降
相关滤波
所以kcf不仅可以用闭式解求解,也可以用
梯度下降
求解。kcf中α迭代也是用0.05的系数,很类似学习率这个东西。kcf本身的所谓缺点:边缘效应完全是由于求解需要用傅立叶变换才导致的。
AI视觉网奇
·
2024-01-14 18:05
视觉相关
深度学习面试题
一、神经网络基础问题(1)Backpropagation(
反向传播
)后向传播是在求解损失函数L对参数w求导时候用到的方法,目的是通过链式法则对参数进行一层一层的求导。
AI信仰者
·
2024-01-14 17:35
机器学习——向量化
对应的C++的向量化例子:线性回归算法
梯度下降
的更新规则的向量化
梯度下降
确定θ参数时,需要同时对所有的θ进行更新,θ的方程如上图所示,一般编程时可能需要写for循环,对所有的θ进行处理,如果是向量化的形式
BioLearner
·
2024-01-14 09:40
李沐 《动手学深度学习》预备知识 线性代数与微积分
预备知识张量操作与数据处理文章目录系列文章目录一、线性代数(一)标量、向量、矩阵、张量(二)张量运算的基本性质(三)降维(四)点积(五)矩阵向量积、矩阵乘法(六)范数二、微积分(导数、偏导数、梯度、链式法则)三、自动微分(一)非标量变量的
反向传播
丁希希哇
·
2024-01-14 07:52
李沐《动手学深度学习》学习笔记
深度学习
线性代数
人工智能
pytorch
李沐《动手学深度学习》线性神经网络 线性回归
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分目录系列文章一、线性回归(一)线性回归的基本元素(二)随机
梯度下降
(三)矢量化加速(实例化说明)(四
丁希希哇
·
2024-01-14 06:01
李沐《动手学深度学习》学习笔记
深度学习
神经网络
线性回归
pytorch
[DL]深度学习_神经网络
bp神经网络推导过程目录一、前向传播二、
反向传播
1、定义2、优化算法三、神经网络整体架构1、基本架构2、隐藏层3、神经元个数对结果的影响4、正则化对结果的影响四、数据预处理1、数据预处理步骤2、数据标准化
IAz-
·
2024-01-14 05:21
深度学习
深度学习
神经网络
人工智能
损失函数介绍
目录损失函数平均绝对误差均方误差交叉熵损失
反向传播
实战环节损失函数损失函数(LossFunction)是一种用于衡量模型预测值与真实值之间差异的函数。
睡不醒的毛毛虫
·
2024-01-14 02:44
PyTorch深度学习快速入门
pytorch
深度学习
python
神经网络
深度学习笔记(三)——NN网络基础概念(神经元模型,
梯度下降
,
反向传播
,张量处理)
文中程序以Tensorflow-2.6.0为例部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。截图部分引用自北京大学机器学习公开课人工智能算法的主流分类首先明白一个概念,广义上的人工智能算法并不是只有MachineLearning或DeepLearning,而是一个相对的,能够使用计算机模拟人类智能在一定场景下自动实现一些功能。所以系统控制论中的很多最优控制算法同样可以称之为智能算法
絮沫
·
2024-01-14 00:39
深度学习
深度学习
笔记
网络
权值初始化
梯度消失指的是在
反向传播
过程中,梯度逐渐变小,导致较远处的层对参数的更新影响较小甚至无法更新。这通常发生在深层网络中,特别是使用某些激活函数(如sigmoid函数)时。
-恰饭第一名-
·
2024-01-13 23:11
机器学习
python
pytorch
UCB Data100:数据科学的原理和技巧:第十三章到第十五章
十三、
梯度下降
原文:GradientDescent译者:飞龙协议:CCBY-NC-SA4.0学习成果优化复杂模型识别直接微积分或几何论证无法帮助解决损失函数的情况应用
梯度下降
进行数值优化到目前为止,我们已经非常熟悉选择模型和相应损失函数的过程
绝不原创的飞龙
·
2024-01-13 20:26
数据科学
python
2、 前馈和反馈神经网络
*2、应用****3、CNN的类型综述**二、RNN**1、结构****2、应用****3、RNN类型**三、GAN**1、结构****2、应用****3、GAN类型**四、FCN五、ResNet六、
反向传播
爱补鱼的猫猫
·
2024-01-13 17:02
深度学习笔记
神经网络
深度学习
cnn
深度学习学习笔记+知识点总结(4万字)
文章目录深度学习神经网络中的Epoch、Iteration、Batchsize
反向传播
(BP)CNN本质和优势鞍点的定义和特点?神经网络数据预处理方法有哪些?神经网络怎样进行参数初始化?
搬砖成就梦想
·
2024-01-13 16:45
深度学习
人工智能
机器学习
深度学习
学习
笔记
贝叶斯优化的基本流程
1我们可以对()求导、令其一阶导数为0来求解其最小值函数()可微,且微分方程可以直接被求解2我们可以通过
梯度下降
等优化方法迭代出()的最小值函数()可微,且函数本身为凸函数3我们将全域的带入()计算出所有可能的结果
今天也要加油丫
·
2024-01-13 13:39
机器学习
机器学习
初始化网络的权重和偏置的方法有哪些?
一个好的初始化方法可以帮助加速
梯度下降
的收敛速度,减少训练时间,甚至有助于避免训练过程中的问题,比如梯度消失或梯度爆炸。
CA&AI-drugdesign
·
2024-01-13 06:46
GPT4
神经网络
人工智能
逻辑回归(ROC、AUC、KS)-python实现-内含训练数据-测试数据
一、逻辑回归理论:关注代码上线HypothesisFunction(假设函数):1.0/(1+exp(-inX))CostFunction(代价函数):通过
梯度下降
法,求最小值。
HiBJTiger
·
2024-01-12 22:02
风控
机器学习
深度学习
人工智能
最小二乘法,极大似然估计,交叉熵
这个最小值找到了,就是相当于神经网络中和人脑中判断猫的模型最相近的那个结果了缺点:用这个作为损失函数非常麻烦,不适合
梯度下降
。
你若盛开,清风自来!
·
2024-01-12 21:38
机器学习
深度学习
人工智能
算法
【强化学习的数学原理-赵世钰】课程笔记(六)随机近似与随机
梯度下降
.说明性实例(llustrativeexamples)3.收敛性分析(Convergenceanalysis)4.在平均值估计中的应用(Applicationtomeanestimation)四.随机
梯度下降
leaf_leaves_leaf
·
2024-01-12 21:00
笔记
人工智能
机器学习
学习
逻辑回归、深度学习简介、
反向传播
LogisticRegression逻辑回归模型介绍LogisticRegression虽然被称为回归,但其实际上是分类模型,并常用于二分类。LogisticRegression因其简单、可并行化、可解释强深受工业界喜爱。Logistic回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。Logistic分布是一种连续型的概率分布,其分布函数和密度函数分别为:Logistic分布
梦码城
·
2024-01-12 17:57
深度学习
深度学习
机器学习
概率论
【深度学习】优化器介绍
文章目录前言一、
梯度下降
法(GradientDescent)二、动量优化器(Momentum)三、自适应学习率优化器前言深度学习优化器的主要作用是通过调整模型的参数,使模型在训练数据上能够更好地拟合目标函数
行走的学习机器
·
2024-01-12 15:32
深度学习
人工智能
计算机视觉
YOLOv2相比YOLOv1有哪些进步及改变?
2.1预测更准确(better)2.1.1batchnormalization批标准化有助于解决
反向传播
过程中的梯
AAI机器之心
·
2024-01-12 15:21
YOLO
人工智能
深度学习
pytorch
web安全
AI
易 AI - 机器学习计算机视觉基础
原文:http://makeoptim.com/deep-learning/yiai-cv计算机视觉表达黑白图灰度图彩色图操作卷积均值滤波归一化统一量纲加速模型训练
梯度下降
GPU浮点运算小结参考链接上一篇讲解了机器学习数据集的概念以及如何收集图片数据集
CatchZeng
·
2024-01-12 09:41
深度学习课程实验二深层神经网络搭建及优化
实验步骤初始化1、导入所需要的库2、搭建神经网络模型3、零初始化4、随机初始化5、He初始化6、总结三种不同类型的初始化正则化1、导入所需要的库2、使用非正则化模型3、对模型进行L2正则化(包括正向和
反向传播
叶绿体不忘呼吸
·
2024-01-12 00:32
实验报告
深度学习
神经网络
人工智能
python
matlab的BP神经网络例子程序
1.BP神经网络的设计实例例1.采用动量
梯度下降
算法训练BP网络。
bluesky140
·
2024-01-11 20:30
【Machine Learning】Optimization
本笔记基于清华大学《机器学习》的课程讲义
梯度下降
相关部分,基本为笔者在考试前一两天所作的CheatSheet。内容较多,并不详细,主要作为复习和记忆的资料。
YiPeng_Deng
·
2024-01-11 15:30
学习小计
机器学习
人工智能
总结
梯度下降
优化理论
08-20201012 感知机2 感知机的权重调整过程叫不叫
反向传播
?
神经网络的学习主要蕴含在权重和阈值中,多层网络使用上面简单感知机的权重调整规则显然不够用了,BP神经网络算法即误差逆传播算法(errorBackPropagation)正是为学习多层前馈神经网络而设计,BP神经网络算法是迄今为止最成功的的神经网络学习算法。上图的网络中有(d+l+1)*q+l个参数需要确定:输入层到隐层的d×q个权重,隐层到输出层q×l个权重、q个隐层神经元的阈值、l个输出神经元的
野山羊骑士
·
2024-01-11 12:08
Gradient Descent补充
1、AdaGrad在
梯度下降
法中,学习率的选择和调整是非常重要的,有时直接决定了训练的质量和收敛的速度。上图展示了学习率过大或过小会产生的问题。
单调不减
·
2024-01-11 06:15
AlexNet论文精读
使用SGD(随机
梯度下降
)来训练,每个batch128,动量为0.9,权重衰减为0.0005(防止过拟合,
warren@伟_
·
2024-01-11 02:02
经典论文笔记
人工智能
深度学习
机器学习-线性回归实践
目标:使用Sklearn、numpy模块实现展现数据预处理、线性拟合、得到拟合模型,展现预测值与目标值,展现
梯度下降
;一、导入模块importnumpyasnpnp.set_printoptions(precision
Visual code AlCv
·
2024-01-10 20:17
人工智能入门
线性回归
算法
回归
梯度下降
法
前言:在均方差损失函数推导中,我使用到了
梯度下降
法来优化模型,即迭代优化线性模型中的和。现在进一步了解
梯度下降
法的含义以及具体用法。
Visual code AlCv
·
2024-01-10 20:46
人工智能入门
人工智能
计算机视觉
深度学习
矢量,矢量化的
梯度下降
以及多元线性回归
一、矢量定义:按照特定顺序排列的元素集合。可以被视为一维数组。在机器学习中的作用:特征表示:在机器学习任务中,输入数据通常以矢量的形式表示。例如,图像可以表示为像素值的矢量,文本可以表示为词向量的矢量。矢量工具可以用来处理和表示这些特征向量,以便机器学习模型能够对其进行处理和学习。模型参数表示:在机器学习模型中,参数通常以矢量的形式表示。例如,线性回归模型的参数可以表示为一个包含权重和偏置的矢量。
Visual code AlCv
·
2024-01-10 20:46
人工智能入门
线性回归
回归
机器学习
深度学习中Epoch和Batch Size的关系
在一个Epoch内,神经网络会看到训练数据集中的所有样本一次,进行前向传播、
反向传播
,并更新权重。BatchSize(批大小):BatchSize定义了在每次权重更新之前,模型看到的
Cc小跟班
·
2024-01-10 11:06
深度学习
batch
人工智能
深度学习与Pytorch实战(二) 预测房价--线性回归
PyTorch实例:线性回归我们将实现一个线性回归模型,并用
梯度下降
算法求解该模型,从而给出预测曲线。
volcanical
·
2024-01-10 10:33
pytorch
深度学习
pytorch
线性回归
使用Scikit Learn 进行识别手写数字
喜欢本专栏的小伙伴,请多多支持专栏案例:机器学习案例机器学习(一):线性回归之最小二乘法机器学习(二):线性回归之
梯度下降
法机器学习(三
i阿极
·
2024-01-10 10:59
机器学习
机器学习
python
sklearn
神经网络
1.4.1机器学习——
梯度下降
+α学习率大小判定
1.4.1
梯度下降
4.1、
梯度下降
的概念※【总结一句话】:系统通过自动的调节参数w和b的值,得到最小的损失函数值J。如下:是
梯度下降
的概念图。
帅翰GG
·
2024-01-10 10:24
机器学习
机器学习
学习
人工智能
2.2.3机器学习—— 判定
梯度下降
是否收敛 + α学习率的选择
2.2.3判定
梯度下降
是否收敛+α学习率的选择2.1、判定
梯度下降
是否收敛有两种方法,如下图:方法一:如图,随着迭代次数的增加,J(W,b)损失函数不断下降当iterations=300之后,下降的就不太明显了
帅翰GG
·
2024-01-10 10:24
机器学习
机器学习
学习
人工智能
反向传播
算法推导过程(看一篇就够了)
反向传播
BackPropagation算法简称BP,算是神经网络的基础了。在神经网络中,正向传播用于模型的训练,模型中的参数不一定达到最佳效果,需要进行“
反向传播
”进行权重等参数的修正。
你好,明天,,
·
2024-01-10 06:34
Python代码
深度学习
深度学习
Softmax回归
目录1.Softmax回归的从零开始实现2.softmax回归的简洁实现对重新审视softmax的实现的思考:对交叉熵损失函数的思考:小批量随机
梯度下降
算法的理解:1.Softmax回归的从零开始实现importtorchfromIPythonimportdisplayfromd2limporttorchasd2l
sendmeasong_ying
·
2024-01-10 06:54
回归
数据挖掘
人工智能
梯度下降
和
反向传播
:能改
一、背景1.问题通过顶点坐标公式,求解出抛物线最低点的w坐标,得到了让误差代价最小的w。同样的,也通过算数说明了这种一步到位求解的方式固然是好,但是在输入特征过多、样本数量过大的时候,却非常消耗计算资源。2.思考抛物线最低点的寻找过程,其实不必一步到位,大可以采用一点点挪动的方式。通过在代价函数e与神经元的权重w图像上挪动w过程中发现,在最低点左侧,需要不断将w调大,在最低点右边,需要不断把w调小
一米阳光_Angel
·
2024-01-10 06:35
python人工智能--专栏
机器学习
梯度下降
法(Gradient Descent)
梯度下降
法(GradientDescent)
梯度下降
法批量
梯度下降
法随机
梯度下降
法scikit-learn中的随机
梯度下降
法小批量
梯度下降
法
梯度下降
法
梯度下降
法,不是一个机器学习算法(既不是再做监督学习
Debroon
·
2024-01-10 03:23
#
机器学习
#
凸优化
凸优化 3:最优化方法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法
梯度下降
最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和
梯度下降
法的区别拟牛顿法DFP
Debroon
·
2024-01-10 03:21
#
凸优化
算法
【ITK库学习】使用itk库进行图像分割(三):分水岭分割算法
itkMorphologicalWatershedImageFilter形态学分水岭滤波器3、itkIsolatedWatershedImageFilter岛屿分水岭滤波器1、itkWaterShedImageFilter分水岭滤波器分水岭分割对图像特征基于
梯度下降
法和沿区域边界分析弱点将像素进行分类
leafpipi
·
2024-01-09 23:51
ITK
学习
算法
c++
图像处理
梯度下降
梯度消失 梯度爆炸 通俗易懂讲解对比
梯度下降
、梯度消失和梯度爆炸都是深度学习中的重要概念,它们与神经网络的训练过程密切相关。下面我会尽量用通俗易懂的方式来解释这三个概念,并进行对比。
香至-人生万事须自为,跬步江山即寥廓。
·
2024-01-09 13:33
机器学习人工智能
人工智能
深度学习
神经网络
机器学习
机器学模型 预训练模型 为什么要使用预训练模型呢?
这通常通过定义一个损失函数来衡量模型预测与真实目标之间的差距,并使用优化算法(如
梯度下降
)来调整模型参数,以最小化这个差距。
香至-人生万事须自为,跬步江山即寥廓。
·
2024-01-09 13:33
机器学习人工智能
深度学习
机器学习
人工智能
【机器学习:Stochastic gradient descent 随机
梯度下降
】机器学习中随机
梯度下降
的理解和应用
【机器学习:随机
梯度下降
Stochasticgradientdescent】机器学习中随机
梯度下降
的理解和应用背景随机
梯度下降
的基本原理SGD的工作流程迭代方法示例:线性回归中的SGD历史主要应用扩展和变体隐式更新
jcfszxc
·
2024-01-09 09:49
机器学习知识专栏
机器学习
人工智能
卷积神经网络|迁移学习-猫狗分类完整代码实现
我们仍然按照这个步骤开始我们的模型的训练准备一个可迭代的数据集定义一个神经网络将数据集输入到神经网络进行处理计算损失通过
梯度下降
算法更新参数imp
霜溪
·
2024-01-09 09:10
pytorch
cnn
迁移学习
分类
【python】神经网络
构建神经网络的典型流程1.定义一个拥有可学习参数的神经网络2.遍历训练数据集3.处理输入数据使其流经神经网络4.计算损失值5.将网络参数的梯度进行
反向传播
6.以一定的规则更新网络的权重卷积神经网络(pytorch
岩塘
·
2024-01-09 08:43
python
神经网络
开发语言
Pytorch
反向传播
计算图被修改的报错
先看看报错的内容RuntimeError:oneofthevariablesneededforgradientcomputationhasbeenmodifiedbyaninplaceoperation:[torch.FloatTensor[5,1]],whichisoutput0ofAsStridedBackward0,isatversion2;expectedversion1instead.H
Midsummer啦啦啦
·
2024-01-09 07:06
深度学习代码复现报错解决方案
pytorch
python
人工智能
09-20201012 感知机3-感知机的前向传播和
反向传播
可用如下图表示
反向传播
就是通过真实值和预测值的产生的误差返回去调整w和b的过程用流程图来表示,如下说到这里,正向传播就是y=wx+b,如此简单。那么这个
反向传播
的这个loss如果得到呢?
野山羊骑士
·
2024-01-09 06:18
一句话总结卷积神经网络
训练时依然采用了
反向传播
算法,求解的问题不是凸优化问题。和全连接神经网络一样,卷积神经网络是一个判别模型,它既可以用于分类问题,也可以用用于回归问题,并且支持多分类问题。
城市中迷途小书童
·
2024-01-09 00:48
强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)
TDforactionvalues)BasicSarsa变体1:ExpectedSarsa变体2:n-stepSarsaQ-learing(TDforoptimalactionvalues)TD算法汇总*随机近似(SA)&随机
梯度下降
Green Lv
·
2024-01-08 15:40
机器学习
笔记
强化学习
人工智能
机器学习
深度学习
时序差分
上一页
3
4
5
6
7
8
9
10
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他