E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
强化学习从入门到放弃
CoRL 2023 获奖论文公布,manipulation、
强化学习
等主题成热门
今年的CoRL2023共有199篇论文入选,热门主题包括控制、
强化学习
等。大会已经于上周11月6日-9日在美国亚特兰大举行,在本次大会上,公布了最佳论文奖、最佳学生论文奖、最佳系统论
深度之眼
·
2023-11-14 19:56
人工智能干货
深度学习干货
人工智能
CoRL
机器人
深度
强化学习
论文中的阴影折线图——总结和分析
前言作为目前人工智能算法的一个重要领域,
强化学习
算法的表现非常出色,然而,
强化学习
算法的结果是出了名的不稳定:超参数的搜索空间往往非常大,算法对不同超参数都较为敏感,且哪怕仅仅只有随机数种子的不同,算法的结果都可能出现不小的偏差
别出BUG求求了
·
2023-11-14 18:11
数据处理
深度强化学习
阴影折线图
分布式人工智能:基于TensorFlow RTOS与群体智能体系(文末留言赠书)
活动截止时间:2020年11月21号18:00整下面我们来介绍一下这本书内容介绍本书结合了分布式计算、大数据、机器学习、深度学习、
强化学习
等技术,以群体智能为主线,讲述了分布式
人工智能与算法学习
·
2023-11-14 15:52
分布式
人工智能
算法
大数据
编程语言
强化学习
:10种真实的奖励与惩罚应用
作者|Patrycja翻译|Katie,责编|晋兆雨出品|AI科技大本营头图|付费下载于视觉中国在
强化学习
(ReinforcementLearning)中,对代理进行奖励和惩罚机制的培训。
AI科技大本营
·
2023-11-14 15:48
大数据
机器学习
人工智能
深度学习
python
Python 零基础
强化学习
量化交易笔记(1):梯度上升
什么是梯度上升?梯度上升是一种用于最大化给定奖励函数的算法。描述梯度上升的常用方法使用以下场景:假设您被蒙住眼睛并被放置在山上的某个地方。然后,你的任务是找到山的最高点。在这种情况下,您尝试最大化的“奖励函数”是您的提升。找到此最大值的一种简单方法是观察您所站立区域的坡度,然后向上移动。一步一步地遵循这些指示最终将您带到顶部!在上山时,重要的是我们知道该地区的坡度或坡度,这样我们才能知道要朝哪个方
NutHub
·
2023-11-14 14:56
零基础量化交易系统开发
python
机器学习
回归
第0课-python
从入门到放弃
声明:本系列教程的python代码,makedown语法,对缩进特别不友好,但是python的层级关系又严格依赖缩进,故此系列的所有python代码不一定都能直接运行。有可能需要手动调整代码缩进。python的版本目前是3.7.最重要的事情python一定要注意空格和换行,特别是行首、行尾不该多的空格或者table缩进一定不要有,不然就是SyntaxError:invalidsyntax引入的本地
wo_monic
·
2023-11-14 10:45
从C++到Rust (二):所有权详解
系列文章目录Rust入门手册-《C++:
从入门到放弃
》(一)目录所有权ownershipC++的指针安全:从智能指针谈起所有权ownership、引用reference浅拷贝、深拷贝与移动语义Copytrait
Nefelibata-Z
·
2023-11-14 09:21
开发语言
rust
c++
《机器学习实战》1章-机器学习概览
-TomMitchell二、机器学习分类Ⅰ、按照是否有监督有监督学习有标签无监督学习无标签半监督学习部分有标签
强化学习
有奖惩。
一只勤劳的小鸡
·
2023-11-14 05:28
机器学习
人工智能
机器学习
记校招这场尴尬的经历Ⅰ--阿里蚂蚁金服(算法工程师-机器学习)
拜托一个朋友进行的内推,本来是想内推C/C++开发的,朋友说:“你这项目经历也没有C/C++相关的,只有一个
强化学习
相关的,要不换个职位试试(虽然只有一个很low的Q-learning相关的项目)。”
ytao_liu
·
2023-11-14 05:28
招聘
python算法中的机器学习算法之半监督学习和
强化学习
(详解)
目录学习目标:学习内容:1.半监督学习(Semi-SupervisedLearning)Ⅰ.基于图的半监督学习
除不掉的灰色
·
2023-11-14 05:27
算法设计与分析
人工智能
机器学习
ai
算法
python
【新书推荐】【2020】深度
强化学习
人类最好从反馈中学习,我们被鼓励采取能带来积极结果的行动,同时又被消极后果的决定所吓倒。这种强化过程可以应用到计算机程序中,使它们能够解决经典编程无法解决的更复杂的问题。Humanslearnbestfromfeedback—weareencouragedtotakeactionsthatleadtopositiveresultswhiledeterredbydecisionswithnegati
梅花香——苦寒来
·
2023-11-13 18:57
[PyTorch][chapter 62][
强化学习
-基本概念]
前言:目录:
强化学习
概念马尔科夫决策Bellman方程格子世界例子一
强化学习
强化学习
必须在尝试之后,才能发现哪些行为会导致奖励的最大化。
明朝百晓生
·
2023-11-13 18:55
机器学习
算法
人工智能
ChatGPT 学习笔记 - 1
3、InstructGPT使用的技术是RLHF(来自用户反馈的
强化学习
);4、两个目标:提高输出结果的有用性和真实性,降低有害性和偏差;5、在GPT3的prompt中
Linky1990
·
2023-11-13 03:43
chatgpt
学习
笔记
强化学习
中广义策略迭代
一、广义策略迭代策略迭代包括两个同时进行的交互过程,一个使价值函数与当前策略保持一致(策略评估),另一个使策略在当前价值函数下变得贪婪(策略改进)。在策略迭代中,这两个过程交替进行,每个过程在上一个过程完成之前开始,但这并不是必需的。例如,在价值迭代中,仅在每次策略改进之间执行一次策略评估的迭代。在异步DP方法中,评估和改进过程以更精细的粒度交错。在某些情况下,单个状态在一个过程中更新后才会返回另
Older司机渣渣威
·
2023-11-12 08:27
机器学习
强化学习
中动态规划的效率
一、效率问题动态规划(DP)对于非常大的问题可能不实用,但与其他解决马尔可夫决策过程(MDP)的方法相比,DP方法实际上是非常有效的。如果我们忽略一些技术细节,那么DP方法(在最坏的情况下)找到最优策略所需的时间是状态和动作数量的多项式。如果我们用n和m表示状态和动作的数量,这意味着DP方法所需进行的计算操作数量小于n和m的多项式函数。尽管确定性策略的总数是mn,但DP方法保证在多项式时间内找到最
Older司机渣渣威
·
2023-11-12 08:57
动态规划
算法
强化学习
中蒙特卡罗方法
一、蒙特卡洛方法这里将介绍一个学习方法和发现最优策略的方法,用于估计价值函数。与前文不同,这里我们不假设完全了解环境。蒙特卡罗方法只需要经验——来自实际或模拟与环境的交互的样本序列的状态、动作和奖励。从实际经验中学习是引人注目的,因为它不需要任何关于环境动态的先验知识,但仍然可以实现最优行为。从模拟经验中学习也很强大。尽管需要一个模型,但该模型只需要生成样本转换,而不是动态规划所需的完整概率分布的
Older司机渣渣威
·
2023-11-12 08:22
机器学习
人工智能
DoorGym:开源的可拓展的开门仿真环境,用于域随机化的
强化学习
、深度
强化学习
0.概述目的:创建一个可以改变门把手形状、类型、位置、环境颜色、照明条件、机械臂结构的仿真环境,以训练出鲁棒性更高、更能关注到任务本质特征、容易迁移到现实的模型网址:环境下载,1.领域随机化DR假设很难对目标域进行完美建模,但很容易创建许多不同的模拟来近似目标域2.引擎Unity:用来为视觉提供渲染画面Mujoco:使用对应框架和接口3.环境组成:机械臂、门、门把手、门框、墙;其中前三者的物理特性
阿航626
·
2023-11-12 04:57
机器人操作持续学习论文
开门
PPO
机器人
机器人学习
强化学习
机械臂
《
强化学习
与机器人控制》:探索深度学习的应用宝典
《
强化学习
与机器人控制》是一本涵盖了广泛主题的深度著作,它不仅介绍了人机交互控制和
强化学习
的基本原理,还深入探讨了无模型
强化学习
控制器以及其在机器人控制中的应用。
清图
·
2023-11-11 20:39
机器学习
深度学习
jmeter-5-
从入门到放弃
【基础篇】
一、Jmeter简介:1、简介Jmeter是一款基于Java程序开发的可视化客户端(类似postman客户端)、具有开源、高可扩展性、高移植性、多线程框架等特点。简单来说它就是:界面友好,能够快速上手,在任何操作系统java环境便可运行,基于java程序开发可自定义编写插件。Jmeter业界使用最多的场景:服务端的性能测试(压力测试、并发测试)接口测试、接口自动化测试(Http、FTP、RPC、W
十尾仙狸
·
2023-11-11 19:58
jmeter
数据库
java
jmeter
python
软件测试
【机器学习范式】监督学习,无监督学习,
强化学习
, 半监督学习,自监督学习,迁移学习,对比分析+详解与示例代码
目录1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.
强化学习
(ReinforcementLearning):4.半监督学习(Semi-SupervisedLearning
LeapMay
·
2023-11-11 17:43
python
机器学习
机器学习
人工智能
Python
强化学习
实战及其AI原理详解
文章目录1.引言2.时间旅行和平行宇宙3.
强化学习
4.策略梯度算法5.代码案例6.推荐阅读与粉丝福利1.引言 时间循环是一类热门的影视题材,其设定常常如下:主人公可以主动或被动的回到过去。
爱编程的喵喵
·
2023-11-11 15:10
优质书籍推荐
python
强化学习
人工智能
【C语言
从入门到放弃
5】输入&输出,文件读写,预处理器和头文件详解
C语言是一种广泛使用的编程语言,它提供了丰富的功能和库,使得开发人员可以进行底层的编程。在本文中,我们将深入了解C语言中的输入&输出,文件读写,预处理器和头文件。输入&输出C语言中的输入&输出是通过标准库函数来实现的。以下是一个简单的示例,演示了如何使用printf函数进行输出和scanf函数进行输入:#includeintmain(){intnum;printf("请输入一个整数:");scan
三岁牧羊
·
2023-11-11 12:44
C
c语言
开发语言
【C语言
从入门到放弃
6】递归,强制类型转换,可变参数和错误处理详解
C语言是一种功能强大的编程语言,具有许多高级特性,包括强制类型转换,递归,可变参数和错误处理。在本文中,我们将深入了解这些特性,并提供简单的示例来帮助理解。递归递归是一种函数调用自身的技术,在C语言中经常被使用。以下是一个简单的示例,演示了如何使用递归计算阶乘:#includeintfactorial(intn){if(n==0||n==1){return1;}else{returnn*facto
三岁牧羊
·
2023-11-11 12:44
C
c语言
开发语言
【C语言
从入门到放弃
4】字符串,结构体,共用体,位域,typedef详解
C语言是一种广泛应用于系统编程和嵌入式开发的高效编程语言。在本文中,我们将介绍C语言中的一些重要概念,包括字符串、结构体、共用体、位域和typedef,并提供简单的示例代码。字符串在C语言中,字符串是以空字符('\0')结尾的字符数组。我们可以使用字符数组来表示字符串,并通过一系列标准库函数来处理字符串。以下是一个简单的字符串示例:#includeintmain(){charstr[]="Hell
三岁牧羊
·
2023-11-11 12:41
C
c语言
开发语言
无梯度
强化学习
:使用遗传算法进化代理
一、说明我想提高我的
强化学习
技能。由于对这个领域一无所知,我参加了一门课程,接触到了Q学习及其“深度”等效项(深度Q学习)。在那里我接触到了OpenAI的Gym,他们有多种环境可供代理玩耍和学习。
无水先生
·
2023-11-11 11:12
人工智能
深度学习
人工智能
深度学习
【码银送书第十期】《
强化学习
:原理与Python实战》
目录1.什么是人工智能对齐2.为什么要研究人工智能对齐3.人工智能对齐的常见方法1.什么是人工智能对齐人工智能对齐(AIAlignment)指让人工智能的行为符合人的意图和价值观。人工智能系统可能会出现“不对齐”(misalign)的问题。以ChatGPT这样的问答系统为例,ChatGPT的回答可能会含有危害祖国统一、侮辱先烈、丑化中华民族、教唆暴力、出口成“脏”等违法或不符合社会主义核心价值观的
码银
·
2023-11-11 09:21
送书活动
python
开发语言
用于
强化学习
的置换不变神经网络
一、介绍如果
强化学习
代理提供的输入在训练中未明确定义,则通常表现不佳。一种新方法使RL代理能够正常运行,即使受到损坏、不完整或混乱的输入的影响也是如此。
无水先生
·
2023-11-11 08:25
深度学习和计算机视觉
人工智能
人工智能
神经网络
机器学习之深度
强化学习
机器学习之深度
强化学习
机器学习最酷的分支应该算是深度学习(Deeplearning)和
强化学习
(Reinforcementlearning)。
丫头片子不懂事
·
2023-11-11 06:11
机器学习
深度学习
机器学习
基于
强化学习
的期权量化交易回测系统5
我们现在已经可以在主循环中获取行情数据,并且传给了Agent类。接下来Agent类会调用策略类,由于决定采取的行动。在策略类做决策时,需要参考用户仓位Position信息,还有就是权利金、保证金、手续费等计算,在本篇博文中将对这些内容进行介绍。交易费用计算在进行期权交易时,多头买入认购和认沽期权时,需要向卖出方支付权利金,而为了保证卖方可以履约,要向卖方收取保证金。同时,券商还会收取手续费和税费,
最老程序员闫涛
·
2023-11-11 06:35
量化交易
期权量化交易
50ETF
回测平台
AI由许多不同的技术组成,其中一些最核心的技术如下
机器学习包括监督学习、无监督学习和
强化学习
等多种类型。深度学习:这是一种基于神经网络的机器学习技术,它可以通过学习大量的数据来提取有用的特征。
软件开发小胡
·
2023-11-11 04:28
社交新零售
电商
拼团
人工智能
你需要新的好奇心方法克服
强化学习
中的「拓展症」
雷锋网(公众号:雷锋网)AI科技评论按:
强化学习
(RL)是当下机器学习最活跃的研究方向之一,其中智能体在做正确的事情时获得奖励,否则获得惩罚。
weixin_33939843
·
2023-11-11 03:31
人工智能
《
强化学习
Sutton》读书笔记(一)——多臂赌博机(Multi-armed Bandits)
此为《
强化学习
》第二章。多臂赌博机问题描述问题描述略。理想状态下,如果我们可以知道做出行为aa时得到的期望价值,那问题就结了,按期望选择最大的就好了。
yucong96
·
2023-11-11 00:28
读书笔记
强化学习
强化学习
导论(第二版)第二章 多臂赌博机
本书的第一章大部分为概念性内容,本篇博客的目的是想将
强化学习
的内容结合实际用习题和代码来展现出来。因此,直接而从第二章开始。但是有一个地方需要强调,
强化学习
yuxzhang
·
2023-11-11 00:28
强化学习
python
第2章:多臂赌博机
参考书籍:ReinforcementLearningAnintroduction第二版作者:RichardS.SuttonandAndrewG.Barto以及此书的中文版《
强化学习
》第2章:多臂赌博机上一章
格雷拉-皮奇
·
2023-11-11 00:27
Sutton‘s
RL
强化学习
强化学习
:2.多摇臂赌博机的应用
强化学习
:2.多摇臂赌博机2.1k-摇臂赌博机问题2.2动作值方法2.310-摇臂测试工具2.4增量式实现2.5追踪非固定性问题2.6乐观初始值2.7上置信界动作选择2.8梯度赌博机算法2.9关联搜索(
人工智睿
·
2023-11-11 00:27
强化学习
《
强化学习
》-读书笔记-第二章 多臂赌博机
2.1一个k臂赌博机问题2.2动作-价值方法2.310臂测试平台2.4增量式实现跟踪一个非平稳问题乐观初始值基于置信度上界(UCB)的动作选择梯度赌博机算法二.多臂赌博机在只有一个状态的简化情况下讨论
强化学习
中评估和反馈的诸多性质
小了白了兔_白了又了白
·
2023-11-11 00:27
强化学习
算法
强化学习
国科大高级人工智能10-
强化学习
(多臂赌博机、贝尔曼)
无状态)马尔科夫决策过程MDP(markovdecisionprocess1.动态规划蒙特卡罗方法——不知道环境完整模型情况下2.1on-policy蒙特卡罗2.2off-policy蒙特卡罗时序差分方法
强化学习
叶落叶子
·
2023-11-11 00:26
高级人工智能
机器学习
人工智能
强化学习
如何在时间循环里最优决策——时间旅行者的最优决策
文章目录每日一句正能量前言时间旅行和平行宇宙
强化学习
策略梯度算法代码案例推荐阅读赠书活动每日一句正能量做一个决定,并不难,难的是付诸行动,并且坚持到底。
想你依然心痛
·
2023-11-11 00:56
#
赠书活动
数据库
时间决策
策略算法
【
强化学习
笔记-01】多臂赌博机问题
参考资料:https://leovan.me/cn/2020/05/multi-armed-bandit/1.问题描述一个赌徒,要去摇老虎机,走进赌场一看,一排老虎机,外表一模一样,但是每个老虎机吐钱的概率可不一样,他不知道每个老虎机吐钱的概率分布是什么,那么每次该选择哪个老虎机可以做到最大化收益呢?这就是多臂赌博机问题(Multi-armedbanditproblem,MAB)多臂赌博机问题中,
Xieyh@CUC
·
2023-11-11 00:56
强化学习
强化学习
【
强化学习
】多臂老虎机
目录简介k臂老虎机问题动作-价值方法10臂测试平台增量式实现跟踪一个非平稳问题乐观初始值基于置信度上界的动作选择梯度赌博机算法关联搜索(上下文相关的赌博机)简介
强化学习
与机器学习最大的不同,在于前者的训练信号是用来评估给定动作的好坏的
sword_csdn
·
2023-11-11 00:25
机器学习
机器学习
算法
人工智能
强化学习
多臂赌博机
强化学习
与其他机器学习方法最大的不同,就在于前者的训练信号是用来评估给定动作的好坏的,而不是通过给出正确动作范例来进行直接的指导。
羽星_s
·
2023-11-11 00:24
强化学习(第二版)知识点整理
算法
贪心算法
强化学习
第一部分 表格型求解方法: 第二章 多臂赌博机
2.7基于置信度上界的动作选择练习官方答案:2.8梯度赌博机算法练习官方答案通过随机梯度上升实现梯度赌博机算法2.9关联搜索(上下文相关的赌博机)练习2.10本章小结练习第一部分表格型求解方法主要介绍简单
强化学习
所使用的算法的核心思想
草帽KIKI
·
2023-11-11 00:23
强化学习
机器学习
强化学习
强化学习
中的问题--多臂赌博机与上下文赌博机
强化学习
上图:多臂赌博机问题中,只有行动影响回报。中图:上下文赌博机问题中,状态和行动都影响回报。下图:完备
强化学习
问题中,行动影响状态,回报可能在时间上延迟。
ZJKL_Silence
·
2023-11-11 00:51
推荐算法
强化学习---赌博机
深入理解
强化学习
——多臂赌博机:梯度赌博机算法的数学证明
分类目录:《深入理解
强化学习
》总目录通过将梯度赌博机算法理解为梯度上升的随机近似,我们可以深人了解这一算法的本质。
von Neumann
·
2023-11-11 00:48
深入理解强化学习
人工智能
强化学习
深度强化学习
多臂赌博机
K臂赌博机
STM32RTC实时时钟实验讲解,
从入门到放弃
。
STM32RTC实时时钟实验讲解,
从入门到放弃
。文章目录STM32RTC实时时钟实验讲解,
从入门到放弃
。前言一、RTCRTC是什么?
KING_阿飞
·
2023-11-10 21:22
STM32实验讲解
从入门到放弃系列教程
嵌入式
stm32
RTC
组合优化开题报告分享:基于
强化学习
的旅行商问题研究
基于
强化学习
的旅行商问题研究课题的来源、意义课题的国内外研究概况及发展趋势课题的研究内容和技术方案理论与实践方面预计的预期成果主要参考文献课题的来源、意义课题来源:微软亚洲研究院联合研究基金和某公司横向项目优化问题涉及在不同的可能性中找到最佳配置或
原创小白变怪兽
·
2023-11-10 17:34
组合优化
算法
人工智能
机器学习
组合优化
开题报告
RSA-CRT 使用中国剩余定理CRT对RSA算法进行解密
有关数论的一些基础知识可以参考以下文章:密码学基础知识-数论(
从入门到放弃
)一、中国剩余定理(CRT)设p和q是不同的质数,且n=p*q。
小熊的学习笔记
·
2023-11-10 17:29
密码学合集
算法
RSA
中国剩余定理
欧拉定理
公钥加密算法
《Grokking Deep Reinforcement Learning》笔记(Chapter 8-10)
Chapter8本书依然聚焦于
强化学习
问题中智能体与环境交互之后得到的feedbacksignal的形式,前7章包含了sequentialandevaluativefeedback,而DRL的目标是构建一个能够从
RavenRaaven
·
2023-11-10 14:02
强化学习
机器学习
深度学习
人工智能
【深度
强化学习
】1. 基础部分
文章目录
强化学习
纲要-基础部分
强化学习
应用案例
强化学习
在做什么?
*pprp*
·
2023-11-10 13:22
深度强化学习入门
深度学习
pytorch
神经网络
强化学习
[PyTorch][chapter 61][
强化学习
-免模型学习 off-policy]
前言:蒙特卡罗的学习基本流程:PolicyEvaluation:生成动作-状态轨迹,完成价值函数的估计。PolicyImprovement:通过价值函数估计来优化policy。同策略(one-policy):产生采样轨迹的策略和要改善的策略相同。PolicyEvaluation:通过-贪心策略(),产生(状态-动作-奖赏)轨迹。PolicyImprovement:原始策略也是-贪心策略(),通过价
明朝百晓生
·
2023-11-10 13:48
学习
上一页
15
16
17
18
19
20
21
22
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他