E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习笔记——吴恩达
见微知著,你真的搞懂Google的Wide&Deep模型了吗?
这里是「王喆的
机器学习笔记
」的第三十二篇文章。
王喆的机器学习笔记
·
2023-11-01 06:54
研0开始如何读论文
(zhihu.com)
吴恩达
:关于机器学习职业生涯以及阅读论文的一些建议https://www.youtube.com/watch?
SofiaT
·
2023-10-31 16:57
学习笔记
论文管理工具
论文阅读工具
人工智能
深度学习
机器学习笔记
- 神经辐射场(NeRF)的简要概述
一、简述神经辐射场十分重要。在表示和渲染3D场景领域,神经辐射场(NeRF)在准确性方面取得了巨大突破。给定底层场景的多个图像,NeRF可以从任意视点重建该场景的高分辨率、2D渲染图。与局部光场融合(LLFF)和场景表示网络(SRN)等现有技术相比,NeRF更能够捕获场景外观和几何形状的复杂组成部分(例如,依赖于视图的反射和复杂的材料)。NeRF的研究目的是合成同一场景不同视角下的图像。方法很简单
坐望云起
·
2023-10-31 09:46
深度学习从入门到精通
神经辐射场
3D重建
NeRF
神经网络
深度学习
计算机视觉
机器学习笔记
(含图像处理)
一、回归1.梯度下降梯度下降是通过不断更新各个变量的参数得到代价函数的全局最小值,更新方式为:原来的参数-步长×代价函数对参数的偏导。注意:迭代次数和步长需要由自己设定。越接近最小值时,代价函数对参数的偏导(即斜率)就越小,则达到最小值就越慢。代码:defgradientDescent(X,y,theta,alpha,iters):temp=np.matrix(np.zeros(theta.sha
鼎__
·
2023-10-31 08:28
机器学习
机器学习
深度学习
神经网络
ChatGPT提示词工程(七):Chatbot聊天机器人
get_completion2.辅助函数:get_completion_from_messages三、聊天机器人(Chatbot)1.一般聊天机器人1.1简单的例子1.2多轮对话2.订单机器人一、说明这是
吴恩达
J_Xio
·
2023-10-31 07:29
ChatGPT
chatgpt
机器人
openai
prompt
人工智能
ChatGPT提示词工程(五):Transforming转换
)1.翻译Translation2.语气转换ToneTransformation3.格式转换FormatConversion4.拼写或语法检查Spellcheck/Grammarcheck一、说明这是
吴恩达
J_Xio
·
2023-10-31 07:58
ChatGPT
chatgpt
ai
prompt
人工智能
openai
ChatGPT提示词工程(六):Expanding扩展
目录一、说明二、安装环境三、扩展(Expanding)1.自定义自动回复客户电子邮件2.提醒模型使用客户电子邮件中的详细信息3.参数temperature一、说明这是
吴恩达
《ChatGPTPromptEngineeringforDevelopers
J_Xio
·
2023-10-31 07:58
ChatGPT
chatgpt
prompt
openai
人工智能
AI
机器学习笔记
第一周:概述
1.什么是机器学习非正式定义:使计算机学习的能力没有明确编程的学习领域。正式定义:一个计算机程序可以从经验E学习一些类别的任务T和性能测量P,如果它的性能在任务T中以P作为测量,随着经验E改善,则称这个程序为机器学习。“例子:玩跳棋E=玩许多棋子游戏的经验T=玩跳棋的任务P=程序将赢得下一场比赛的概率一般来说,机器学习可以分为两类:有监督学习和无监督学习2.有监督学习在监督式学习中,我们得到了一个
古木沉舟
·
2023-10-31 01:08
总结
吴恩达
文章《How to read a research paper》
HowtoreadaresearchpaperChooseAreaofInterest(saySpeechRecognition)Ingeneral,ifyouread15-20papers,yougetagoodunderstandingofanyfield/topic;whileifyouread50-100papers,yougetmasteryintheareaCompilethelist
ChandlerBing
·
2023-10-30 18:36
吴恩达
《面向开发者的提示词工程》
Ref:【中英字幕|P01Introduction】2023
吴恩达
新课《面向开发者的提示词工程》_哔哩哔哩_bilibili对应的笔记ChatGPTPrompt-知乎本课程主要介绍指令微调LLM的最佳实践在大型语言模型或
人鱼线
·
2023-10-30 12:37
人工智能
深度学习
Azure - 机器学习:使用 Apache Spark 进行交互式数据整理
目录本文内容先决条件使用ApacheSpark进行交互式数据整理Azure
机器学习笔记
本中的无服务器Spark计算从AzureDataLakeStorage(ADLS)Gen2导入和整理数据从AzureBlob
TechLead KrisChang
·
2023-10-30 07:50
人工智能
azure
机器学习
人工智能
microsoft
循环神经网络
为了学习编码器-译码器架构,可能需要涉及transformer,循环神经网络,序列到序列的知识,这里将循环神经网络作为起点进行学习,参考学习的是
吴恩达
深度学习课程。本文主要涉及单隐层循环
Alex·Fall
·
2023-10-30 05:02
深度学习
rnn
神经网络
深度学习
人工智能
【深度学习】
吴恩达
课程笔记(三)——参数VS超参数、深度学习的实践层面
笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~
吴恩达
课程笔记——参数VS超参数、深度学习的实践层面六、参数VS超参数1.参数和超参数的区别2.什么是超参数?3.如何寻找超参数的最优值?
今天有没有吃饱饱
·
2023-10-29 16:31
深度学习
深度学习
笔记
人工智能
【深度学习】
吴恩达
课程笔记(二)——浅层神经网络、深层神经网络
笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~笔记链接【深度学习】
吴恩达
课程笔记(一)——深度学习概论、神经网络基础
吴恩达
课程笔记——浅层神经网络、深层神经网络四、浅层神经网络1.双层神经网络表示2
今天有没有吃饱饱
·
2023-10-29 16:00
深度学习
深度学习
笔记
神经网络
【深度学习-
吴恩达
】L1-4 深层神经网络 作业
L1深度学习概论4深层神经网络作业链接:
吴恩达
《深度学习》-Heywhale.com0作业任务构建一个任意层数的深度神经网络实现构建深度神经网络所需的所有函数使用这些函数构建一个用于图像分类的深度神经网络学习目标
JackSerin
·
2023-10-29 16:29
深度学习
深度学习
神经网络
python
【深度学习-
吴恩达
】L1-3 浅层神经网络 作业
L1深度学习概论3浅层神经网络作业链接:
吴恩达
《深度学习》-Heywhale.com0作业任务用1层隐藏层的神经网络分类二维数据目标:实现具有单个隐藏层的2分类神经网络使用具有非线性激活函数的神经元计算交叉熵损失实现前向和后向传播
JackSerin
·
2023-10-29 16:29
深度学习
深度学习
神经网络
python
【深度学习-
吴恩达
】L1-2 神经网络基础
L1深度学习概论2神经网络基础课程视频共145min6s2.1二分分类BinaryClassification一些表示方法m:数据集的规模mtrain:训练集规模mtest:测试集规模nx:输入特征向量的维度,简写为n(x,y):一组单独训练样本y:在二分类中,0/1的输出结果,即y∈{0,1}x:nx维度的输入特征向量,即x∈Rnx训练集:{(x(1),y(1)),(x(2),y(2)),…,(
JackSerin
·
2023-10-29 16:59
深度学习
深度学习
神经网络
机器学习
吴恩达
深度学习笔记(一)——第一课第二周
深度学习概论什么是神经网络上图的单神经元就完成了下图中函数的计算。下图的函数又被称为ReLU(修正线性单元)函数复杂的神经网络也是由这些简单的单神经元构成。实现后,要得到结果,只需要输入即可。x那一列是输入,y是输出,中间是隐藏单元,由神经网络自己定义用神经网络进行监督学习领域所用的神经网络房产预测等领域标准架构StandardedNN计算机视觉卷积神经网络CNN音频,文字翻译(一维序列问题)循环
Laurie-xzh
·
2023-10-29 16:57
吴恩达深度学习笔记
深度学习
神经网络
机器学习
【深度学习】
吴恩达
课程笔记(一)——深度学习概论、神经网络基础
笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~
吴恩达
课程笔记——深度学习概论、神经网络基础一、概念区别1.深度学习与机器学习2.深度学习与神经网络二、什么是神经网络1.分类2.特点3.工作原理4.神经网络示意图
今天有没有吃饱饱
·
2023-10-29 16:56
深度学习
神经网络
人工智能
深度学习
python
1024程序员节
吴恩达
《机器学习》2-5->2-7:梯度下降算法与理解
一、梯度下降算法梯度下降算法的目标是通过反复迭代来更新模型参数,以便最小化代价函数。代价函数通常用于衡量模型的性能,我们希望找到使代价函数最小的参数值。这个过程通常分为以下几个步骤:初始化参数:随机或设定初始参数的数值,如0,1,...,。计算代价函数的梯度:对于每个参数,计算代价函数J(0,1,...,)对该参数的偏导数,即梯度,表示为∂J/∂。更新参数:使用梯度信息来更新参数,根据以下规则更新
不吃花椒的兔酱
·
2023-10-29 15:31
机器学习
机器学习
学习
笔记
第1周学习笔记-Coursera机器学习-
吴恩达
Introduction1.MachineLearningdefinitionArthurSamuel(1959).MachineLearning:Fieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammer.古老的、正式的定义编写西洋棋程序,让程序自己跟自己下棋,让程序明白什么是好的布局、坏的布局。
烟若清尘
·
2023-10-29 09:30
Python机器学习从零开始(三)数据准备
——
吴恩达
1.数据预处理数据预处理需要根据数据本身的特性进行,有缺失的要填补,有无效的要剔除,有冗余维的要删除,这些步骤都和数据
靖墨c
·
2023-10-29 09:10
机器学习实战
python
机器学习
人工智能
算法
一文看懂特征工程
吴恩达
提到过机器学习的根本其实就是数据,所以我只想回过头从数据起源这边重新审视自己的模型。顺便将自己对特征工程的所有理解系统地整理出来,给自己做个笔记,也给未来的小白做个领路。
是猪哥不是诸葛
·
2023-10-29 07:53
计算机视觉
TF2.0.keras深度学习
TF2.0神经网络实战教学
机器学习
人工智能
深度学习
AI基础:自然语言处理基础之序列模型
本文主要参考
吴恩达
老师的深度学习课程[1]笔记部分。0.导语序列模型,是自然语言处理的基础,本集讲解循环序列模型。
Wang_AI
·
2023-10-29 07:22
机器学习笔记
第5课:线性回归算法
线性回归可能是统计学和机器学习中最知名且易于理解的算法之一。它不就是一项起源于统计学的技术吗?预测建模主要关注的是让模型的误差最小化,或者说,在可以解释的前提下,尽可能作出最准确的预测。我们会借用,重用,甚至是窃取许多不同领域(包括统计学)的算法,并将其用于上述的目标。线性回归通常表示为这样一个等式:通过查找特定的称为系数(B)的输入变量的权重,来描述最符合输入变量(x)和输出变量(y)之间关系的
首席IT民工
·
2023-10-29 04:51
机器学习笔记
03_机器学习基本概念(下)
学习视频:[中英字幕]
吴恩达
机器学习系列课程学习资料:https://github.com/fengdu78/Coursera-ML-AndrewNg-NotesGitHub不好用的话,我在CSDN资源区也上传了开源资料
三木今天学习了嘛
·
2023-10-28 17:25
机器学习
机器学习
深度学习
人工智能
吴恩达
《机器学习》2-2->2-4:代价函数
一、代价函数的概念代价函数是在监督学习中用于评估模型的性能和帮助选择最佳模型参数的重要工具。它表示了模型的预测输出与实际目标值之间的差距,即建模误差。代价函数的目标是找到使建模误差最小化的模型参数。二、代价函数的理解训练集数据:假设我们有一个训练集,其中包含个样本(数据点),每个样本都有一个特征和一个对应的目标值。模型的假设函数:我们构建一个假设函数ℎ()用于预测目标值。在单变量线性回归中,这个假
不吃花椒的兔酱
·
2023-10-28 16:58
机器学习
机器学习
学习
笔记
机器学习笔记
3——模型评估与选择(二)
凡事都要有个标准,仅仅看实验测试的表现还不够,衡量泛化能力还需要有一套评价标准,也叫做性能度量(performancemeasure)。当然标准也可以有好几套,从不同维度和侧重来评价。这同时也反映了模型的好坏是相对的,换一个标准评价的结果是不一样的。没有最好的,只有最合适的。一、性能度量1、错误率与精度这是分类任务最常用的两种性能度量。错误率=分类错误的数量/样本总数精度=分类正确的数量/样本总数
libodls
·
2023-10-28 14:27
机器学习
AUC
Machine
Learning
ROC
代价敏感
机器学习
吴恩达
深度学习-序列模型 2.7 负采样
这节课学习的同样是一个监督学习嵌入向量的模型,上节课的skip-gram使用的softmax分类器求和带来的计算量太大了,这节课使用的算法可以避免这个问题。这节课名字叫做负采样,那么正采样呢?我们还是像上节课一样,在一句话里随机选出一个context,然后在一定的词距范围内选择一个词。这两个词组成的一个pair就叫做正样本,然后再在词典当中随机选择一个词,把它们设置成不相关,这就叫做负样本,这些随
prophet__
·
2023-10-28 10:32
吴恩达
《机器学习》1-3:监督学习
一、监督学习例如房屋价格的数据集。在监督学习中,我们将已知的房价作为"正确答案",并将这些价格与房屋的特征数据一起提供给学习算法。学习算法使用这些已知答案的数据来学习模式和关系,以便在未知情况下预测其他房屋的价格。这就是监督学习,通过提供正确答案来训练算法以做出准确的预测或估计。二、回归问题回归:推测出这一系列连续值属性。回归问题:根据输入特征来预测或推测出连续的数值结果。举例来说,房价预测可以被
不吃花椒的兔酱
·
2023-10-28 05:50
机器学习
机器学习
学习
笔记
吴恩达
《机器学习》1-5:模型描述
一、单变量线性回归单变量线性回归是监督学习中的一种算法,通常用于解决回归问题。在单变量线性回归中,我们有一个训练数据集,其中包括一组输入特征(通常表示为)和相应的输出目标(通常表示为)。这个算法的目标是学习一个线性函数,通常表示为ℎ(),其中是要学习的参数,以便将输入特征映射到输出目标。具体地,对于单变量线性回归,通常使用以下形式的线性函数:其中:ℎ()表示通过算法学习到的假设(或预测)函数。0和
不吃花椒的兔酱
·
2023-10-28 05:50
机器学习
机器学习
学习
笔记
吴恩达
《机器学习》1-4:无监督学习
参考资料:[中英字幕]
吴恩达
机器学习系列课程黄海广博
不吃花椒的兔酱
·
2023-10-28 05:08
机器学习
机器学习
学习
笔记
吴恩达
机器学习笔记
WhatisMachineLearning?TwodefinitionsofMachineLearningareoffered.ArthurSamueldescribeditas:"thefieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed."Thisisanolder,informaldef
孙虾米
·
2023-10-28 03:33
【机器学习算法-K近邻(KNN)】
机器学习笔记
(1)-K近邻K近邻算法scikit-learnK近邻算法API案例机器学习算法步骤k值的选择鸢尾花数据集种类预测鸢尾花数据集案例实现交叉验证K近邻算法什么是k近邻算法(k近邻算法又叫做knn
闲看庭前梦落花
·
2023-10-28 02:56
机器学习算法
机器学习
python
算法
---
吴恩达
原文来自Quora:How-should-you-start-a-career-in-Machine-LearningCoursera上的斯坦福机器学习旨在帮助广大观众开始机器学习。如果您熟悉基本的编程(用任何语言),我建议从那里开始。许多人通过完成MOOC来获得机器学习方面的工作。其他类似的在线课程也会有帮助;例如,约翰·霍普金斯大学的数据科学专业。参加Kaggle或其他在线机器学习比赛也帮助人
everfight
·
2023-10-28 02:02
机器学习笔记
(三)
神经网络训练中的问题(二)BatchandMomentumBatch之前有说过,实际上在算微分的时候,并不是真的对所有Data算出来的L作微分,你是把所有的Data分成一个一个的Batch,每次在更新参数时实际上是对每一个batch进行操作,所有的batch看过一遍叫做一个Epoch。那么就存在这样一个问题,batch的大小如何选择?取两个极端的情况,同样是一个20个数据大小数据集,第一次我们将b
鼠尾草的第24个朋友
·
2023-10-28 01:47
机器学习笔记
python
机器学习
深度学习
大数据
Prompt
文章目录ChatGPTPromptEngineeringforDevelopers(
吴恩达
)引言指南Principleprinciple1-Usedelimitersprinciple1-Askforstructuredoutputprinciple1
右边是我女神
·
2023-10-27 22:32
prompt
人工智能
机器学习笔记
:逆置换
1介绍给定一个排列p,它的逆置换(inversepermutation)是一个排列invp,满足invp[p[i]]=i和p[invp[i]]=i对所有i成立。2python实现'''计算一个排列的逆排列给定一个排列p,它的逆排列是一个排列invp,满足invp[p[i]]=i和p[invp[i]]=i对所有i成立'''definvpermute(p):"""inversepermutation"
UQI-LIUWJ
·
2023-10-27 17:06
机器学习
笔记
吴恩达
机器学习第一周第一课
第一课内容比较简单,大致分为三类1.人工智能的主要应用无人驾驶;垃圾邮件的分类;推荐系统,图片识别,语音识别,文字识别等等。2.机器学习的定义TomMitchell(1998)Well-posedLearningProblem:AcomputerprogramissaidtolearnfromexperienceEwithrespecttosometaskTandsomeperformanceme
摩托卡
·
2023-10-27 07:59
人工智能
人工智能
吴恩达
机器学习
第一周第一课
吴恩达
机器学习第十周测试
第一题答案B分析:当代价函数呈上升趋势的时候,可以试着将学习率减小第二题答案CD分析:A:随机梯度下降并不能并行化,错误。B:批量梯度下降是在每一次迭代后计算代价函数,错误。C:在随机梯度下降算法执行之前,先要将样本打乱,正确。D:在大量数据样本的情况下,随机梯度下降要比批量梯度下降效率高,正确。第三题答案AD第四题答案CD第五题答案ACD
一叶知秋Autumn
·
2023-10-27 07:28
机器学习
机器学习
机器学习
【
吴恩达
课后测验】Course 3 - 结构化机器学习项目 - 第一周测验之关于我的理解
前10个很简单,对此没什么疑惑,第十一题我有一些迷,查阅网上资料后,清楚了一些,把我的理解挂上正则化是为了防止过拟合开发集和测试集是属于同一分布的,此时两者的错误率相差很大,说明对开发集适应的太好,过拟合了,从而导致对测试集测试的不好。改善的策略有很多,为了防止过拟合,可以增加开发集大小等如果把数据放进数据集之后,训练的话就会造成对原有的图像进行再训练,这将会导致过拟合、新样本相对于总样本比例非常
墨水河刘能
·
2023-10-26 02:04
sheng的学习笔记-【中】【
吴恩达
课后测验】Course 3 - 结构化机器学习项目 - 第一周测验
课程3_第1周_测验题目录:目录要解决的问题①这个例子来源于实际项目,但是为了保护机密性,我们会对细节进行保护。②现在你是和平之城的著名研究员,和平之城的人有一个共同的特点:他们害怕鸟类。③为了保护他们,你必须设计一个算法,以检测飞越和平之城的任何鸟类,同时警告人们有鸟类飞过。市议会为你提供了10,000,000张图片的数据集,这些都是从城市的安全摄像头拍摄到的。它们被命名为:y=0:图片中没有鸟
coldstarry
·
2023-10-26 02:30
吴恩达作业-深度学习
深度学习
sheng的学习笔记-【中】【
吴恩达
课后测验】Course 3 - 结构化机器学习项目 - 第二周测验
课程3_第2周_测验题目录:目录要解决的问题①为了帮助你练习机器学习的策略,本周我们将介绍另一个场景,并询问你将如何行动。②我们认为这个在机器学习项目中工作的“模拟器”将给出一个任务,即领导一个机器学习项目可能是什么样的!③您受雇于一家初创公司,制造自动驾驶汽车。④您负责检测图像中的道路标志(停车标志、人行横道标志、施工先行标志)和交通信号(红绿灯)。⑤目标是识别每张图像中的这些对象。例如,上面的
coldstarry
·
2023-10-26 02:26
吴恩达作业-深度学习
深度学习
【算法竞赛学习】数字中国创新大赛智慧海洋建设-Task3特征工程
“数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”——机器学习界;类似的,
吴恩达
曾说过:“特征工程不仅操作困难、耗时,而且需要专业领域知识。应用机器学习基本上就是特征工程。”赛题:
jaeden_xu
·
2023-10-24 20:08
数据分析挖掘
算法
人工智能
机器学习
吴恩达
机器学习笔记
(五)正则化Regularization
正则化(regularization)过拟合问题(overfitting)Underfitting(欠拟合)–>highbias(高偏差)Overfitting(过拟合)–>highvariance(高方差)Overfitting:Ifwehavetoomanyfeatures,thelearnedhypothesismayfitthetrainingsetverywell,butfailtoge
哇哈哈哈哈呀哇哈哈哈
·
2023-10-24 20:09
机器学习
机器学习
人工智能
逻辑回归
吴恩达
机器学习笔记
---正则化
前言使用正则化技术缓解过拟合现象,使模型更具泛化性1.过拟合问题(Overfit)2.代价函数(CostFunction)3.线性回归的正则化(RegularizedLinearRegression)4.逻辑回归的正则化(RegularizedLogisticRegression)正则化(Regularization)(一)过拟合问题(Overfit) 先看两张图: 两张图分别代表回归问题和分
ML0209
·
2023-10-24 20:38
机器学习
机器学习
机器学习笔记
(四)模型泛化 、过拟合与欠拟合、L1正则化、L2正则化
目录1、过拟合与欠拟合2、学习曲线3、数据划分4、交叉验证5、偏差方差权衡BiasVarianceTradeoff6、模型正则化Regularization6.1、正则化6.2、岭回归RidgeRegression6.3、LASSORegression6.4、L1正则化,L2正则化和弹性网ElasticNet1、过拟合与欠拟合欠拟合underfitting算法所训练的模型不能完整表述数据关系过拟合
小广向前进
·
2023-10-24 20:38
深度学习笔记
机器学习
机器学习-
吴恩达
-笔记-3-正则化
目录过拟合问题代价函数正则化线性回归正则化逻辑回归【此为本人学习
吴恩达
的机器学习课程的笔记记录,有错误请指出!】
Leon.ENV
·
2023-10-24 20:05
机器学习
机器学习
2019-07-20机器学习完成
今天终于完成了
吴恩达
的机器学习课程,所有作业都已经完成,历时半年,难掩心中的兴奋。有时候也会迷茫,下一步,要学什么呢?
Wincent__
·
2023-10-24 06:19
循环神经网络(Recurrent Neural Network Model)
来源:Coursera
吴恩达
深度学习课程上篇文章介绍了RNN的数学符号(Notation),现在我们讨论一下怎样才能建立一个神经网络来学习X到Y的映射。如下图所示。
双木的木
·
2023-10-23 23:35
吴恩达深度学习笔记
深度学习知识点储备
笔记
神经网络
python
机器学习
人工智能
深度学习
上一页
6
7
8
9
10
11
12
13
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他