E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
正则化特征选择
MATLAB实现岭回归数学建模算法
岭回归通过在损失函数中添加一个
正则化
项,即岭项(Ridgeterm),来解决多重共线性问题。
正则化
项的引入有助于限制模型参数的大小,防止它们过度膨胀。岭回归的优化目标是最小化损失函数和正
AI Dog
·
2024-02-10 06:00
数学建模\MATLAB
算法
matlab
回归
数学建模
数据挖掘
统计学习方法笔记之决策树
决策树学习的损失函数通常是
正则化
后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。
Aengus_Sun
·
2024-02-09 17:51
深度学习技巧应用36-深度学习模型训练中的超参数调优指南大全,总结相关问题与答案
深度学习模型训练中的调优指南大全概括了数据预处理、模型架构设计、超参数优化、
正则化
策略和训练技巧等多个关键方面,以提升模型性能和泛化能力。
微学AI
·
2024-02-09 10:47
深度学习技巧应用
深度学习
人工智能
超参数
调优
模型
基于BatchNorm的模型剪枝【详解+代码】
文章目录1、BatchNorm(BN)2、L1与L2
正则化
2.1L1与L2的导数及其应用2.2论文核心点3、模型剪枝的流程ICCV经典论文,通俗易懂!
全息数据
·
2024-02-09 08:05
图像算法
剪枝
深度学习
剪枝
深度学习
数据挖掘应用领域
数据挖掘的方法,如
特征选择
和属性相关性计算,有助于识别重要的因素和非相关因素。例如,与货款偿还风险相关的因素,包括货款率、贷款期限、负债率、偿还与收入(paymen
Liam_ml
·
2024-02-09 06:50
特征工程:特征提取、特征预处理、
特征选择
一、特征提取1.字典特征提取sklearn.feature_extraction.DictVectorizer(sparse=True,…)dict=DictVectorizer(sparse=False)data=dict.fit_transform([{'city':'北京','temperature':100},{'city':'上海','temperature':60},{'city':'
xiaobai_IT_learn
·
2024-02-09 00:02
人工智能
python
特征工程
特征提取
特征预处理
特征选择
特征工程:衡量特征的重要型
知乎
特征选择
:https://zhuanlan.zhihu.com/p/32749489结合sklearn的几种
特征选择
方法:https://www.cnblogs.com/hhh5460/p/5186226
千寻~
·
2024-02-09 00:32
数据处理
机器学习
特征工程
特征选择
特征工程:特征提取和降维-上
目录一、前言二、正文Ⅰ.主成分分析Ⅱ.核主成分分析三、结语一、前言前面介绍的
特征选择
方法获得的特征,是从原始数据中抽取出来的,并没有对数据进行变换。
林浩杨
·
2024-02-09 00:01
数据探索与可视化
机器学习
人工智能
机器学习
算法
python
数据分析
特征工程:
特征选择
目录一、前言二、正文Ⅰ.基于统计方法的
特征选择
Ⅱ.基于递归消除特征发Ⅲ.基于机器学习的方法三、结语一、前言
特征选择
是使用某些特征统计的方法,从数据中选出有用的特征,把数据中无用的特征抛弃掉,该方法不会产生新的特征
林浩杨
·
2024-02-09 00:00
数据探索与可视化
机器学习
人工智能
数据分析
Task 4:建模调参
内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式
特征选择
我是曾阿牛
·
2024-02-08 13:36
模型选择的方法
正则化
和交叉验证
正则化
在经验风险上加一个
正则化
项或者罚项,回忆下经验风险是模型关于一个训练集的平均损失.交叉验证验证随机的将数据集分为训练集,验证集和测试集,分类简单交叉验证一部分作为训练集,一部分作为测试集
pcqlegend
·
2024-02-08 13:39
每天一个数据分析题(一百五十五)
C.
特征选择
指的是从相关性较强的变量中提取代表性的变量,还可以做多项式旋转会增加变量。D.在数据挖掘的实践中,最佳实践是建立一个包含所有变量的大模型来处理不同情况。题目来源于CDA模拟题库点击此处获取
紫色沙
·
2024-02-08 09:20
数据分析题库
数据分析
数据挖掘
机器学习:特征工程笔记
目录主要内容1.数据清洗1.1缺失值处理1.2异常值处理1.3去除重复项1.4数据一致性和格式规范化2.
特征选择
2.1过滤法(FilterMethods)2.2包裹法(Wrapp
Ningbo_JiaYT
·
2024-02-08 07:09
机器学习
机器学习
算法
笔记
梯度提升树系列5——使用GBDT进行
特征选择
特征选择
是机器学习和数据科学中至关重要的一环,它不仅可以提高模型的性能,还能显著减少模型训练所需的时间和资源。
theskylife
·
2024-02-07 23:56
数据挖掘
深度学习
人工智能
机器学习
数据挖掘
【MATLAB】使用随机森林在回归预测任务中进行
特征选择
(深度学习的数据集处理)
1.随机森林在神经网络的应用当使用随机森林进行
特征选择
时,算法能够为每个特征提供一个重要性得分,从而帮助识别对目标变量预测最具影响力的特征。
编程到天明
·
2024-02-07 15:31
matlab
随机森林
算法
【MATLAB】使用梯度提升树在回归预测任务中进行
特征选择
(深度学习的数据集处理)
1.梯度提升树在神经网络的应用使用梯度提升树进行
特征选择
的好处在于可以得到特征的重要性分数,从而识别出对目标变量预测最具影响力的特征。
编程到天明
·
2024-02-07 15:59
MATLAB
matlab
深度学习
梯度提升树
特征选择
政安晨:机器学习快速入门(四){pandas与scikit-learn} {随机森林}
随机森林的主要特点是采用了随机采样和随机
特征选择
的方法,以降低模型的方差和减小过拟合的风险。在随机森林中,对于每个决策树的构建,会从训练集中随机选择一部分样本进行有放回抽样,同
政安晨
·
2024-02-07 09:42
政安晨的机器学习笔记
Python语言大讲堂
机器学习
scikit-learn
随机森林
机器学习竞赛
python
pandas
决策树优化
【机器学习300问】22、什么是超参数优化?常见超参数优化方法有哪些?
在之前的文章中,我主要介绍了学习率η和
正则化
强度λ这两个超参数。这篇文章中我就主要拿这两个超参数来进行举例说明。
小oo呆
·
2024-02-07 06:00
【机器学习】
机器学习
人工智能
机器学习系列——(十四)
正则化
回归
引言在机器学习领域,
正则化
回归是一种常用的技术,旨在解决过拟合问题,提高模型的泛化能力。本文将简单探讨
正则化
回归的概念、类型和应用,帮助读者更好地理解和运用这一重要技术。
飞影铠甲
·
2024-02-07 06:28
机器学习
机器学习
回归
人工智能
L1与L2损失函数和
正则化
的区别
通常的两个决策为:1)L1范数vsL2范数的损失函数;2)L1
正则化
vsL2
正则化
。作为损失函数 L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE
山阴少年
·
2024-02-06 20:34
机器学习算法之决策树
步骤:
特征选择
、决策树生成、决策树剪枝(1)
特征选择
:每次选择的特征要具备一定的分类能力,否则没有意义。通常选择的方式有信息增益或信息增益比。a.信息增益:在知道特征X的情况下,使得类
浅白Coder
·
2024-02-06 17:24
机器学习
概率论
机器学习
决策树
算法
LightGBM特征重要性和可视化
在机器学习方面,模型性能在很大程度上取决于
特征选择
和对每个特征重要性的理解。LightGBM是微软开发的一种高效的梯度提升框架,由于其处理各种机器学习任务的速度和准确性而广受欢迎。
python收藏家
·
2024-02-06 11:19
机器学习
机器学习
「深度学习」dropout 技术
一、工作原理1.
正则化
网络dropout将遍历网络的每一层,并设置消除神经网络中节点的概率。
Sternstunden
·
2024-02-06 06:20
深度学习
深度学习
人工智能
神经网络
机器学习
机器学习速成课程 学习笔记17:稀疏性
正则化
//developers.google.cn/machine-learning/crash-course/regularization-for-sparsity/l1-regularizationL₁
正则化
减少所有权重的绝对值
HBU_DAVID
·
2024-02-06 04:15
Xgboost
算法释义Xgboost是一种带有
正则化
项,并利用损失函数泰勒展开式中二阶导数信息优化求解并增加一些计算优化的梯度提升树。
大雄的学习人生
·
2024-02-06 03:05
Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(五)
TensorFlow进行自定义模型和训练到目前为止,我们只使用了TensorFlow的高级API,Keras,但它已经让我们走得很远:我们构建了各种神经网络架构,包括回归和分类网络,Wide&Deep网络,自
正则化
网络
绝不原创的飞龙
·
2024-02-05 20:21
人工智能
tensorflow
人工智能福利站,初识人工智能,机器学习,第二课
欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一机器学习专栏人工智能专业知识学习二机器学习专栏文章目录初识人工智能(机器学习)一、机器学习(2)11.什么是
特征选择
和特征提取?
普修罗双战士
·
2024-02-05 19:44
人工智能专栏
人工智能
机器学习
周记:2019第26周(6.24-6.30)
记录一下各种降低模型错误率的方法,包括添加
正则化
项,数据集扩增,多任务学习,earlystoping,dropout,稀疏表示。理论
孙文辉已被占用
·
2024-02-05 15:48
【SparkML实践7】
特征选择
器FeatureSelector
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
周润发的弟弟
·
2024-02-05 12:41
Spark机器学习
spark-ml
2-5 异常检测 Anomaly detection with robust deep autoencoders 笔记
2.3创新之处 除了使用传统的L1
正则化
去约束噪声部分之外
Siberia_
·
2024-02-05 11:34
Pytorch: nn.dropout
Dropout是一种用于深度学习模型的
正则化
技术,旨在减少模型对特定训练样本的过度拟合。其主要作用包括:减少过拟合:Dropout阻止神经网络对某些特定输入值过度依赖,从而提高模型的泛化能力。
湫兮之风
·
2024-02-05 09:31
pytorch
pytorch
人工智能
python
深度学习
机器学习
《深度学习入门》学习笔记
文章目录前言第一章python入门列表字典类numpy广播第二章感知机第三章神经网络激活函数第四章神经网络的学习损失函数求梯度第五章误差反向传播法第六章与学习相关的技巧6.1寻找最优参数6.3权重的初始值6.4
正则化
YY_oot
·
2024-02-05 05:55
机器学习
深度学习
python
神经网络
人工智能
PyTorch 2.2 中文官方教程(十四)
对深度学习模型进行
正则化
是一项令人惊讶的挑战。传统技术,如惩罚方法,通常在应用于深度模型时效果不佳,因为被优化的函数的复杂性。当处理病态模型时,这一点尤为棘手。这些模型的示例包括
绝不原创的飞龙
·
2024-02-04 21:55
人工智能
pytorch
人工智能
python
WOA-CNN-BiLSTM-Attention鲸鱼算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测
优化的参数为:学习率,隐藏层节点数,
正则化
参数。评价指标包括:R2、MAE和MAPE等,图很多,出图结果如图所示,可完全满足您的需求[cool]2.直接替换Excel数据即可用,适合新手小白[
前程算法屋
·
2024-02-04 21:53
算法
神经网络
cnn
WOA-CNN-BiLSTM
动手学深度学习(二)——
正则化
(从零开始)
文章作者:Tyan博客:noahsnail.com|CSDN|注:本文为李沐大神的《动手学深度学习》的课程笔记!高维线性回归使用线性函数$y=0.05+\sum_{i=1}^p0.01x_i+\text{noise}$生成数据样本,噪音服从均值0和标准差为0.01的正态分布。#导入mxnetimportrandomimportmxnetasmx#设置随机种子random.seed(2)mx.ran
SnailTyan
·
2024-02-04 14:13
机器学习系列——(九)决策树
决策树的构建过程:
特征选择
:根据某种指标选择最佳特征,将数据集划分为不同的子集。决策节点生成:
飞影铠甲
·
2024-02-04 11:45
机器学习
机器学习
决策树
人工智能
SSVEPNet:使用标签平滑与谱归一化的高效CNN-LSTM网络
SSVEPNet:使用标签平滑与谱归一化的高效CNN-LSTM网络1.论文摘要2.背景介绍3.CNN-LSTM网络4.
正则化
技术4.1.基于视觉注意力机制的标签平滑技术4.2.谱归一化技术5.实验结果5.1
Ethan Hunt丶
·
2024-02-04 11:54
脑电信号处理
人工智能
cnn
lstm
网络
吴恩达:改善深层神经网络:超参数调试、
正则化
以及优化(Improving Deep Neural Networks:Hyperparameter tuning, Regularizatio)
@[toc]1.1训练、开发、测试集trainset训练集Devset验证集testset测试集小规模数据:训练集:其他=7:3大数据时代(超百万数据):训练集占80%或者90%以上验证集和测试集来自同一分布如果只有训练集和验证集,那么验证集Devset就是测试集testset1.2偏差、方差[图片上传失败...(image-438142-1626709583495)]trainseterror1
Cache_wood
·
2024-02-04 10:48
为什么很多孩子做不好时间管理?
计时器、番茄钟、沙漏,根据孩子的年龄
特征选择
适合他
糖妈_Candy
·
2024-02-04 08:34
机器学习:Softmax回归(Python)
logistic_regression_mulclass.pyimportnumpyasnpimportmatplotlib.pyplotaspltclassLogisticRegression_MulClass:"""逻辑回归,采用梯度下降算法+
正则化
捕捉一只Diu
·
2024-02-04 04:27
机器学习
回归
python
笔记
机器学习算法加强——数据清洗
认为方差最大的直线方向是主方向数据——>数据清洗——>
特征选择
——>特征分析——>模型计算(管道)importoperatorimportnumpyasn
Grateful_Dead424
·
2024-02-03 17:11
算法
L1归一化和L2归一化范数的详解和区别
从公式上来说:L1的公式:绝对值相加L2的公式:欧几里德距离之和就是样本和标签之差的平方之和两个范数的简单性能对比:在
正则化
中二者的区别:同时注意由于L1是绝对值之和,因此同一个问题得出的解可能有多个:
code_Rocker
·
2024-02-03 17:34
algorithm
&&
data
process
机器学习
L1
L2
回归问题总结(梯度下降、线性回归、逻辑回归、源码、
正则化
)
原文地址:http://blog.csdn.net/gumpeng/article/details/51191376最近,应妹子要求,对回归问题进行了总结。网上相关资料很多,主要是针对AndrewNg的在线课程写的笔记,但大部分都讲得不清晰。这篇博客不能算是原创,主要是将我认为比较好的博客做了汇总,按照我觉得比较容易看懂的方式进行排版。希望能对大家有帮助。有兴趣的同学也可以根据文章最后的参考文献,
菜鸟的翅膀
·
2024-02-03 17:32
机器学习与数据挖掘
数据挖掘
源码
DoubleEnsemble:基于样本重加权和
特征选择
的金融数据分析方法
现代机器学习模型(如深度神经网络和梯度提升决策树)由于其提取复杂非线性模式的优越能力,在金融市场预测中越来越受欢迎。然而,由于金融数据集的信噪比非常低,并且是非平稳的,复杂的模型往往很容易过拟合。此外,随着各种机器学习和数据挖掘工具在量化交易中的应用越来越广泛,许多交易公司已经提取了越来越多的特征(也称为因子factors)。因此,如何自动选择有效特征成为一个迫在眉睫的问题。为了解决这些问题,作者
tzc_fly
·
2024-02-03 16:57
论文阅读笔记
金融
数据分析
人工智能
决策树知识点
1.常见的一些决策树模型ID3C4.5CART结构多叉树多叉树二叉树
特征选择
信息增益信息增益率Gini系数、均方差连续值处理不支持支持支持缺失值处理不支持支持支持剪枝不支持支持支持2.决策树树得构建流程
慢慢向前-
·
2024-02-03 13:05
机器学习
机器学习
机器学习原理
神经网络负梯度方向反向传播局部最小就是全局最小svm支持向量机/核函数降维/对偶利于核函数/软间隔
正则化
去掉噪声,提升鲁棒性决策树信息增益,熵/剪枝/随机森林随机选取n个数据得到m棵cart树进行bagging
ixtgtg
·
2024-02-03 07:51
机器学习算法
sklearn.preprocessing 标准化、归一化、
正则化
文章目录数据标准化的原因作用归一化最大最小归一化针对规模化有异常的数据标准化线性比例标准化法log函数标准化法
正则化
Normalization标准化的意义数据标准化的原因某些算法要求样本具有零均值和单位方差
Cachel wood
·
2024-02-03 07:35
python机器学习和数据挖掘
sklearn
人工智能
python
机器学习
数据库
pandas
SCI一区 | Matlab实现mRMR-CNN-GRU-Mutilhead-Attention最大相关最小冗余
特征选择
卷积门控循环单元融合多头注意力机制多特征分类预测
SCI一区|Matlab实现mRMR-CNN-GRU-Mutilhead-Attention最大相关最小冗余
特征选择
卷积门控循环单元融合多头注意力机制多特征分类预测目录SCI一区|Matlab实现mRMR-CNN-GRU-Mutilhead-Attention
机器学习之心
·
2024-02-03 01:57
分类预测
mRMR-CNN-GRU
CNN-GRU
Mutilhead
Attention
最大相关最小冗余特征选择
卷积门控循环单元
融合多头注意力机制
算法大览:24美赛深度总结与代码分享
数据降维降维|基于PCA算法降维|基于KPCA算法【数据+代码】Lasso
特征选择
离散和连续数据的降维方
小Z的科研日常
·
2024-02-02 14:21
数学建模
python
【吴恩达深度学习】— 参数、超参数、
正则化
32.jpg1.参数VS超参数1.1什么是超参数(Hyperparameters)?比如算法中的learningrate(学习率)、iterations(梯度下降法循环的数量)、L(隐藏层数目)、(隐藏层单元数目)、choiceofactivationfunction(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数。实际上深度学习有很多不同的超参数,
Sunflow007
·
2024-02-02 13:58
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他