E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
神经网络机器学习论文
机器学习
Day01人工智能概述
1.什么样的程序适合在gpu上运行计算密集型的程序:此类程序主要运算集中在寄存器,寄存器读写速度快,而GPU拥有强大的计算能力,能高效处理大量的寄存器运算,因此适合在GPU上运行。像科学计算中的数值模拟、密码破解等场景的程序,都属于计算密集型,在GPU上运行可大幅提升运算速度。易于并行的程序:GPU采用SIMD架构,有众多核心,同一时间每个核心适合做相同的事。易于并行的程序能充分利用GPU这一特性
山北雨夜漫步
·
2025-03-23 22:58
机器学习
人工智能
卷积
神经网络
- 理解卷积核的尺寸 k×k×Cin
卷积
神经网络
中,每个卷积核的尺寸为k×k×Cin,这一设计的核心原因在于多通道输入的数据结构和跨通道特征整合的需求。
谦亨有终
·
2025-03-23 22:26
AI学习笔记
cnn
人工智能
神经网络
深度学习
机器学习
机器学习
:让计算机学会思考的艺术
目录什么是
机器学习
?
机器学习
的基本步骤常见的
机器学习
算法
机器学习
的实际应用如何入门
机器学习
?结语在当今数字化时代,
机器学习
(MachineLearning,ML)已经成为一个炙手可热的话题。
平凡而伟大.
·
2025-03-23 21:19
机器学习
机器学习
人工智能
机器学习
中的 K-均值聚类算法及其优缺点
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
平凡而伟大.
·
2025-03-23 21:18
机器学习
机器学习
算法
均值算法
一文讲清楚深度学习和
机器学习
目录1.定义
机器学习
(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理
机器学习
深度学习3.应用场景
机器学习
深度学习4.主要区别5.为什么选择深度学习?
平凡而伟大.
·
2025-03-23 21:18
机器学习
人工智能
深度学习
机器学习
人工智能
Transposed convolution(2016 IEEE)
论文
标题FullyConvolutionalNetworksforSemanticSegmentation
论文
作者EvanShelhamer,JonathanLong,TrevorDarrell发表日期
刘若里
·
2025-03-23 19:39
论文阅读
人工智能
计算机视觉
学习
网络
笔记
机器学习
knnlearn1
importmatplotlib.pyplotaspltimportnumpyasnpimportoperator#定义一个函数用于创建数据集defcreateDataSet():#定义特征矩阵,每个元素是一个二维坐标点,代表不同策略数据点的坐标group=np.array([[20,3],[15,5],[18,1],[5,17],[2,15],[3,20]])#定义每个数据点对应的标签,用于区分
XW-ABAP
·
2025-03-23 19:07
机器学习
机器学习
人工智能
基于 MySQL 和 Spring Boot 的在线论坛管理系统设计与实现
markdownCopy✌全网粉丝20W+,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、pyhton、
机器学习
技术领域和毕业项目实战
城南|阿洋-计算机从小白到大神
·
2025-03-23 19:36
mysql
spring
boot
数据库
【
论文
复现】——基于SIFT特征点结合ICP的点云配准方法
目录一、
论文
概述二、代码实现三、结果展示1、初始位置2、配准结果四、实验心得一、
论文
概述 在点云配准过程中,针对迭代最近点(ICP)算法对点云初始位置依赖性强且迭代速度慢的问题,提出一种基于尺度不变特征变换
点云侠
·
2025-03-23 19:35
点云配准专题
开发语言
计算机视觉
算法
3d
c++
零基础入门
机器学习
:用Scikit-learn实现鸢尾花分类
适合人群:
机器学习
新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确
机器学习
解决什么问题,建立学习信心。
机器学习
定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。
藍海琴泉
·
2025-03-23 19:31
机器学习
scikit-learn
分类
机器学习
--DBSCAN聚类算法详解
目录引言1.什么是DBSCAN聚类?2.DBSCAN聚类算法的原理3.DBSCAN算法的核心概念3.1邻域(Neighborhood)3.2核心点(CorePoint)3.3直接密度可达(DirectlyDensity-Reachable)3.4密度可达(Density-Reachable)3.5密度相连(Density-Connected)4.DBSCAN算法的步骤5.DBSCAN算法的优缺点5
2201_75491841
·
2025-03-23 18:30
机器学习
算法
聚类
人工智能
【
机器学习
】
机器学习
工程实战-第3章 数据收集和准备
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
腊肉芥末果
·
2025-03-23 18:28
机器学习工程实战
机器学习
人工智能
机器学习
实战 第一章
机器学习
基础
第一章
机器学习
1.1何谓
机器学习
1.2关键术语1.3
机器学习
的主要任务1.4如何选择合适的算法1.5开发
机器学习
应用程序的步骤1.6Python语言的优势1.1何谓
机器学习
1、简单地说,
机器学习
就是把无序的数据转换成有用的信息
LuoY、
·
2025-03-23 18:27
Machine
Learning
机器学习
算法
人工智能
数据挖掘实战-基于
机器学习
的垃圾邮件检测模型
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
艾派森
·
2025-03-23 18:26
数据挖掘实战合集
数据挖掘
机器学习
人工智能
python
集成学习(随机森林)
只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的二、Bagging集成原理分类圆形和长方形三、随机森林在
机器学习
中,随机森林是
herry57
·
2025-03-23 18:24
数学建模
大数据
随机森林
集成学习
【
机器学习
】朴素贝叶斯入门:从零到垃圾邮件过滤实战
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
吴师兄大模型
·
2025-03-23 18:22
0基础实现机器学习入门到精通
机器学习
人工智能
朴素贝叶斯
深度学习
pytorch
sklearn
开发语言
【
机器学习
】
机器学习
工程实战-第2章 项目开始前
上一章:第1章概述文章目录2.1
机器学习
项目的优先级排序2.1.1
机器学习
的影响2.1.2
机器学习
的成本2.2估计
机器学习
项目的复杂度2.2.1未知因素2.2.2简化问题2.2.3非线性进展2.3确定
机器学习
项目的目标
腊肉芥末果
·
2025-03-23 18:21
机器学习工程实战
机器学习
人工智能
Description of a Poisson Imagery Super Resolution Algorithm
论文
阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
青铜锁00
·
2025-03-23 17:50
论文阅读
Radar
论文阅读
《基于自适应正负样本对比学习的特征提取框架》-核心公式提炼简洁版 2022年neural networks
论文
源地址以下是从文档中提取的关于“基于对比学习的特征提取框架(CL-FEFA)”中正负样本对比学习实现的技术细节,包括详细的数学公式、特征提取过程以及特征表示方式的说明。
阳光明媚大男孩
·
2025-03-23 17:49
学习
深度学习
人工智能
论文笔记
机器学习
怎么做特征工程
一、特征工程通俗解释特征工程就像厨师做菜前的食材处理:原始数据是“生肉和蔬菜”,特征工程是“切块、腌制、调料搭配”,目的是让
机器学习
模型(食客)更容易消化吸收,做出更好预测(品尝美味)。
全栈你个大西瓜
·
2025-03-23 17:47
人工智能
机器学习
人工智能
特征工程
数据预处理
特征变换
特征降维
特征构造
【
机器学习
】
机器学习
四大分类
机器学习
的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。
藓类少女
·
2025-03-23 17:16
机器学习
机器学习
分类
人工智能
机器学习
——KNN超参数
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
练习AI两年半
·
2025-03-23 17:44
机器学习
人工智能
深度学习
【图像去噪】
论文
精读:CVPR 2025 | DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.Relatedworks2.1.ColorImagedenoising2.2.ReplacingCNNwithLUT3
十小大
·
2025-03-23 16:41
图像去噪
深度学习
计算机视觉
人工智能
图像处理
论文阅读
论文笔记
QHDBO基于量子计算和多策略融合的蜣螂优化算法
方程(1)用于原始
论文
中更新滚动蜣螂的位置:xi(t+1)=xi(t)+α⋅k⋅xi(t−1)+b⋅Δx(1)x_i(t+1)=x_i(t)+\alpha\cdotk\cdotx_i(t-1)+b\cdot
算法小狂人
·
2025-03-23 15:29
算法改进
智能优化算法
量子计算
算法
DeepSeek多语言AI高效应用实践
本文系统性拆解其技术架构设计逻辑,聚焦
论文
写作、代码生成、SEO关键词拓展三大核心场景,分析模型在高生成质量、低使用成本维度的差异化优势。
智能计算研究中心
·
2025-03-23 15:26
其他
【第1章>第6节】CMAC小脑模型
神经网络
的理论学习与MATLAB仿真
目录1.使用软件和版本2.CMAC小脑模型
神经网络
概述2.1CMAC网络结构2.2CMAC地址映射2.3学习过程3.CMAC网络的MATLAB编程实现4.分辨率,重叠度,学习率对CMAC网络的训练性能影响分析
fpga和matlab
·
2025-03-23 15:54
#
第1章·神经网络
学习
matlab
CMAC
小脑模型神经网络
人工智能
重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、
机器学习
和优化中具有重要作用
ZhangJiQun&MXP
·
2025-03-23 14:20
教学
2021
论文
2024大模型以及算力
矩阵
概率论
线性代数
windows
微信
机器学习
维普AIGC降重方法有哪些?
在学术写作和
论文
创作中,重复率过高是许多人面临的一大难题。随着科技的发展,维普AIGC为我们提供了一系列有效的降重方法。那么,维普AIGC降重方法有哪些呢?接下来就为大家详细介绍。
hjehheje
·
2025-03-23 14:18
AIGC
使用Jupyter Notebook进行深度学习编程 - 深度学习教程
深度学习是人工智能领域中的一项重要技术,通过模仿人脑
神经网络
的方式进行学习和分析。JupyterNotebook作为一个强大的工具,可以帮助我们轻松地进行深度学习编程,尤其适合初学者和研究人员。
shandianfk_com
·
2025-03-23 11:04
ChatGPT
AI
jupyter
深度学习
ide
景联文科技提供高质量文本标注服务,驱动AI技术发展
文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强
机器学习
和深度学习模型对文本内容的理解能力。
景联文科技
·
2025-03-23 10:52
科技
人工智能
景联文科技:以高质量数据标注推动人工智能领域创新与发展
在当今这个由数据驱动的时代,高质量的数据标注对于推动
机器学习
、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。
景联文科技
·
2025-03-23 09:45
科技
人工智能
数据标注
客服机器人怎么才能精准的回答用户问题?
意图分类:通过
机器学习
模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
玩人工智能的辣条哥
·
2025-03-23 09:13
AI面试
机器人
客服机器人
统一的视频动作模型
25年3月来自斯坦福大学的
论文
“UnifiedVideoActionModel”。统一的视频和动作模型对机器人技术具有重大意义,其中视频为动作预测提供丰富的场景信息,而动作为视频预测提供动态信息。
三谷秋水
·
2025-03-23 08:36
计算机视觉
机器学习
人工智能
计算机视觉
深度学习
机器学习
人工智能
OpenCV 4.2.0与扩展模块安装与应用指南
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和
机器学习
算法。
土城三富
·
2025-03-23 08:35
OpenCV ML 模块使用指南
一、模块概述OpenCV的ML模块提供了丰富的
机器学习
算法,可用于解决各种计算机视觉和数据分析问题。
ice_junjun
·
2025-03-23 07:02
OpenCV
opencv
人工智能
计算机视觉
强化学习中策略网络模型设计与优化技巧
I.引言强化学习(ReinforcementLearning,RL)是一种通过与环境交互,学习如何采取行动以最大化累积奖励的
机器学习
方法。
数字扫地僧
·
2025-03-23 07:57
计算机视觉
深度学习
基于Python编程语言实现“
机器学习
”,用于车牌识别项目
基于Python的验证码识别研究与实现1.摘要验证码的主要目的是区分人类和计算机,用来防止自动化脚本程序对网站的一些恶意行为,目前绝大部分网站都利用验证码来阻止恶意脚本程序的入侵。验证码的自动识别对于减少自动登录时长,识别难以识别的验证码图片有着重要的作用。对验证码图像进行灰度化、二值化、去离散噪声、字符分割、归一化、特征提取、训练和字符识别等过程可以实现验证码自动识别。首先将原图片进行灰度化处理
我的sun&shine
·
2025-03-23 04:57
Python
python
机器学习
计算机视觉
Ubuntu和Windows系统之Mamba_ssm安装
Mamba的
论文
:https://arxiv.org/abs/2312.00752Mamba的github:https://github.com/state-spaces/mamba一、Ubuntu安装直接新建一个环境是最好的
Netceor
·
2025-03-23 04:50
Python
ubuntu
windows
linux
卷积
神经网络
Batch Normalization的作用
BatchNormalization的作用(通俗版)1.像“稳定器”一样校准每层输入想象你在烤多层蛋糕,每层蛋糕的烘烤温度不同(相当于
神经网络
的每一层数据分布不同)。
arron8899
·
2025-03-23 03:11
cnn
batch
人工智能
DS/ML:数据科学技术之数据科学生命周期(四大层次+
机器学习
六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略
DS/ML:数据科学技术之数据科学生命周期(四大层次+
机器学习
六大阶段+数据挖掘【5+6+6+4+4+1】步骤)的全流程最强学习路线讲解之详细攻略导读:本文章是博主在数据科学和
机器学习
领域,先后实战过几百个应用案例之后的精心总结
一个处女座的程序猿
·
2025-03-23 03:41
资深文章(前沿/经验/创新)
DataScience
ML
数据科学
数据科学的生命周期
机器学习
一切皆是映射:实现
神经网络
的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
文章目录一切皆是映射:实现
神经网络
的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解
AI天才研究院
·
2025-03-23 02:36
AI大模型企业级应用开发实战
DeepSeek
R1
&
大数据AI人工智能大模型
计算科学
神经计算
深度学习
神经网络
大数据
人工智能
大型语言模型
AI
AGI
LLM
Java
Python
架构设计
Agent
RPA
给普通人看的深度学习说明书:用快递系统理解AI如何思考
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)
机器学习
:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则
嵌入式Jerry
·
2025-03-23 00:23
Python
AI
人工智能
深度学习
简单理解
机器学习
中top_k、top_p、temperature三个参数的作用
在
机器学习
中,top_k、top_p和temperature是用于控制生成模型(如语言模型)输出质量的参数,尤其在文本生成任务中常见。
无级程序员
·
2025-03-23 00:53
机器学习
人工智能
计算机毕业设计指南
本文将从选题、需求分析、系统设计、编码实现、测试优化、
论文
撰写、答辩准备等方面,为你提供一份详细的毕业设计指南。
晴天毕设
·
2025-03-23 00:52
课程设计
毕业设计
java
毕设
开发语言
使用PyTorch搭建Transformer
神经网络
:入门篇
1.简介Transformer是一种强大的
神经网络
架构,在自然语言处理等多个领域取得了巨大成功。本教程将指导您使用PyTorch框架从头开始构建一个Transformer模型。
DASA13
·
2025-03-23 00:21
pytorch
transformer
神经网络
解析大模型归一化:提升训练稳定性和性能的关键技术
引言在深度学习领域,特别是在处理大型
神经网络
模型时,归一化(Normalization)是一项至关重要的技术。它可以提高模型的训练稳定性和性能,在加速收敛方面发挥了重要作用。
秋声studio
·
2025-03-23 00:19
口语化解析
深度学习
人工智能
大模型归一化
小白零基础学数学建模系列-引言与课程目录
第一周:数学建模基础与工具第二周:高级数学建模技巧与应用第三周:
机器学习
基础与数据处理第四周:监督学习与无监督学习算法第五周:
神经网络
二、学完本专辑能收获到什么?三、适合什么样的人群学习?
川川菜鸟
·
2025-03-22 23:47
数学建模小白到精通系列
数学建模
初始OpenCV
OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及
机器学习
领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。
指尖下的技术
·
2025-03-22 22:41
OpenCV
opencv
人工智能
计算机视觉
01年实习生被曝负责字节RL核心算法!系字节LLM攻坚小组成员
论文
通讯作者和开源项目负责人都
·
2025-03-22 22:24
量子位
量子位招聘 | DeepSeek帮我们改的招聘启事
岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读
论文
的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
·
2025-03-22 22:54
量子位
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他