- 统计学习笔记九----EM算法
爱科研的徐博士
【算法】统计学习方法EM算法统计学算法
前言EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量(hiddenvariable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expection);M步,求极大值(maximization),所以这一算法称为期望极大算法(exceptionmaximizationalgorithm),简称EM算法。极大似然估计极大
- R语言:多水平统计模型
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言:多水平统计模型01解决何种问题同样是九年义务教育,凭什么别人那么优秀?显然这跟每个人,不同班级,不同学校有关系,究竟是什么样的关系呢?在临床研究中,研究成都居民和上海居民的糖尿病患病的影响因素。显然成都市民饮食偏向咸辣,上海市民饮食偏清淡,这对糖尿病的危险因素是有影响的。除此以外还有上篇文章中提到的三个案例,如多次测量结局以比较两种治疗方式的治
- 概率与数理统计学习笔记2-估计
悠悠zzz
点估计:目的:总体分布已知情况下,借助样本来估计总体的未知参数方法:矩估计法:样本一阶矩为总体的一阶矩(即期望),样本二阶中心矩为总体的二阶中心矩(即方差)最大似然估计法:利用已知样本结果信息,反推最有可能得到样本结果出现的模型参数值估计量的评选标准:无偏性,有效性,相合性区间估计:估计出参数范围,同时给出此区间包含真实值的可信程度置信区间:反复多次抽样,样本值确定的统计量区间置信水平:1-a指置
- 概率与数理统计学习笔记1-随机变量
悠悠zzz
概率与数理统计学了好几遍都学不清楚,今天再刷一遍,整理出第一篇学习笔记。随机变量:随机事件的数量表现,两种类型,离散型随机变量和连续型随机变量离散型随机变量:变量取值有限个分布律:每个取值的概率0-1分布:取值只有0和1伯努利试验,二项分布:伯努利试验是试验结果只有正反两种结果的试验;二项分布是n重伯努利试验;二项分布当n=1结果就是0-1分布泊松分布:近似二项分布概率的计算方式,当n>20,p=
- 概率与数理统计学习笔记2-假设检验
悠悠zzz
假设检验的目的:判断样本与样本,样本与总体的差异是由抽样误差造成还是本质差别造成;或是为了判断推断总体特征作出的假设是否应该接受名词解释显著性水平:原假设为真却被拒绝的概率(简称弃真概率)提出相互对立的两个假设。原假设H0通常是要被反驳的假设,备择假设H1是认为相对正确的假设检验统计量:统计量差值做过标准化之后的值(下文用差异标准值代替)拒绝域:检验结果落入此区域会被拒绝假设检验的验证方式有2种:
- R语言|广义相加模型(GAM)
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R软件:广义相加模型(GAM)01解决何种问题前面一期和大家分享如何运用样条回归处理遇到的非线性问题,但这适合处理单个因变量Y对应一个自变量X的问题,而现实情况是,我们常常要处理多个自变量和一个因变量之间的关系,除此以外,虽然通过做散点图能发现非线性关系,但很难归属它的形式,广义线性模型中的多项式回归,由于其不好解释的系数,降低了模型实用性。因此本章分
- R语言|两因素重复测量方差分析
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言:两因素重复测量方差分析01研究问题有研究将14名肥胖者随机分成2组,1组用A种减肥药,另一组用B种减肥药,坚持服药6个月,期间禁止使用任何影响体重的药物,其他情况跟之前保持一致。分别测得0周、8周、16周和24周的体重资料。问题:1.新型减肥药A和现有减肥药B的效果是否不同?2.肥胖者在服药后不同时间体重的变化情况。3.控制因素和时间是否有交互
- 统计学习笔记——统计学习三要素
Fiona_ll
读书笔记统计学习方法统计学习:机器学习读书笔记预测算法机器学习统计学习方法
参考书:《统计学习方法》——李航统计学习的三要素为:模型、策略、算法。写在前面的话:以下以监督学习为基础来进行论述。监督学习的假设:在监督学习当中,我们假设输入和输出的随机变量和服从联合概率分布,训练数据和测试数据被看做是依联合概率分布独立同分布产生的。一、模型在监督学习当中,我们的目的是学习一个由输入到输出的映射,这个映射就是模型。一般来说,模型有两种形式,一种是概率模型(条件概率分布),另一种
- 向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归
weixin_40001395
转自个人微信公众号【Memo_Cleon】的统计学习笔记:生存分析之Cox回归。随访资料的生存分析是一个很大的题目。从分析的因素上看,有单因素分析和多因素分析。正如“连续资料的单因素分析常用t检验、方差分析,对应的多因素分析是多重线性回归”、“分类资料的单因素分析方法卡方分析,对应的多因素分析有logistic回归”一样,生存分析的常用单因素(或少数因素)的分析有LifeTables法、Kapla
- 两个自变量和一个因变量spss_SPSS学习笔记:因变量二分类资料的logistic回归分析...
weixin_39524741
两个自变量和一个因变量spss
转自个人微信公众号【Memo_Cleon】的统计学习笔记两个概念:RR和OR二分类资料的logistic回归SPSS操作示例几个需要注意的问题:样本量、哑变量、模型拟合效果和拟合优度检验、多重共线【1】两个概念RR(RelativeRisk):相对危险度,也称危险比(RiskRatio)或率比(RateRatio),在前瞻性研究中用以表示暴露与疾病发生的关联强度,说明暴露组发病危险是非暴露组发病危
- 概率论与数理统计学习笔记——day4
悠哉的zju
概率论
目录一.条件概率的定义二、乘法定理三、全概率公式四、贝叶斯(Bayes)公式一.条件概率的定义2.条件概率的基本性质3.条件概率的其它性质:二、乘法定理三、全概率公式四、贝叶斯(Bayes)公式
- 概率论与数理统计学习笔记之——概率论的基本概念
前丨尘忆·梦
概率论
概率论的基本概念1、随机试验随机试验具有以下特点:可以在相同的条件下重复地进行;每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会出现。2、样本空间、随机事件2.1、样本空间我们将随机试验E的所有可能结果组成的集合成为E的样本空间,记为S。样本空间的元素,即E的每个结果,称为样本点。2.2、随机事件一般,我们称试验E的样本空间S的子集为E的随机事件,
- 概率论与数理统计学习笔记——概率的数学定义,乘法公式,条件概率,全概率,贝叶斯公式,事件的独立性
HiSi_
概率论与数理统计概率论
概率的数学定义:我们能够理解的概率的定义是:某个事件发生的可能性的大小。但是这不是数学定义,其实概率的定义不好正面描述,我的老师在上课的时候也只给出了其的特点,相当于侧面描述:1.任何一个事件发生的概率一定大于等于0,即P(A)>=0.2.必然事件发生的概率为1,P(Ω)=1.3.对于两两互不相容的可列无穷多个事件A1,A2,……,An有P(A1UA2UA3UA4…UAn)=P(A1)+P(A2)
- 概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式
野指针小李
数学概率论全概率公式贝叶斯公式
目录1.背景2.全概率公式3.贝叶斯公式1.背景下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?2.全概率公式上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为P(c)P(c)P(c),玩手机的概
- R语言|Cox模型校准度曲线绘制
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言实现Cox模型校准度曲线绘制研究背景这是关于cox模型的第二篇文章,上一篇文章分享了运用Lasso回归如何筛选变量,将筛选后的变量绘制Nomogram图,本章分享构建模型后,如何绘制校准曲线。cox模型的验证不同于Logistic回归,cox的结局包括时间和状态,所以对于某个患者来说,他的结果是否准确,就要看模型在他随访的时间点,所预测的结局是否
- R语言|基于Cox模型pec包深度验证
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言pec包深度验证Cox模型研究背景在cox回归中,如何利用已经构建好的预测模型预测单个患者的生存概率呢?R中的pec包中predictSurvProb()函数可以利用cph()拟合的模型计算验证集中患者在不同时间节点的生存概率。其次该包还能在验证集中计算不同时间点C-index指数,绘制成图,比较验证集在不同模型中的C-index,通过交叉验证评
- R语言:广义估计方程(GEE)
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言:广义估计方程(GEE)01解决何种问题在临床研究中,经常会比较两种治疗方式对患者结局的影响,并且多次测量结局。例如为了研究两种降血糖药对血糖的控制结果是否存在差异,研究者会在两组人群服药后不同的时间点记录血糖值,然后评价降血糖结果。为评价抗癫痫药物的作用,观察并记录两组不同用药的人群在8周内,每2周发病的次数,分析该药物是否有抑制癫痫发作的作用
- 【李航统计学习笔记】第五章:决策树
西风瘦马1912
李航统计学习笔记机器学习决策树
5.1树的定义树的最顶端叫根节点,所有样本的预测都是从根节点开始的每一个圆形节点表示判断,每个节点只对样本的某个属性进行判断。矩形节点是标记节点,走到矩形节点表示判断结束,将矩形节点中的标签作为对应的预测结果。怎么构建决策树?如果苹果的样本还有一个特征叫形状,我们为形状建立球形和立方型两个分支,显然所有的样本都会到球形分支里面去,这样的判断没有进行有效地划分。此外根据某个特征X,10个苹果中9个会
- 统计学习笔记:方差分析
Bernard.Dong
学习python概率论
方差分析(ANOVA)又称F检验。方差分析是判定方差在组间和组内是否(明显)具有区别的一种方法。如果组内差异相对于组间差异较小,则可以推断出组与组之间是有明显差异的。从形式上看,方差分析与t检验或z检验区别不大,都是检验均值是否相等,但方差分析可以同时比较多个均值。广义的方差分析分为:单因素方差分析(1-wayANOVA)双因素方差分析(2-wayANOVA)与多因素方差分析(N-wayANOVA
- 统计学习笔记:假设检验基本概念及U检验、T检验、F检验
Bernard.Dong
学习
文章目录1.假设检验原假设和备择假设第一类错误和第二类错误p值2.U检验单样本U检验双样本U检验3.T检验单样本T检验双样本T检验(σ12=σ22=σ2\sigma_1^2=\sigma_2^2=\sigma^2σ12=σ22=σ2未知时)3.F检验单样本正态总体方差检验双样本正态总体方差检验(方差齐性检验)1.假设检验这里只讨论双侧参数假设检验,不包含单侧及非参的假设检验。原假设和备择假设在参数
- 【李航统计学习笔记】第一章:统计学习及监督学习概论
西风瘦马1912
李航统计学习笔记机器学习人工智能极大似然估计
1.1导论统计学习监督学习的实现步骤:得到一个有限的训练数据集合确定模型的假设空间,也就是所有的备选模型确定模型选择的准则,即学习的策略实现求解最优模型的算法通过学习方法选择最优模型利用学习的最优模型对新数据进行预测或分析监督学习训练集:T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\left\{\left(x_{1},y_{1}\right),\left(x_{2},y_{2}
- 多元线性回归分析spss结果解读_多重线性回归分析SPSS操作与解读
weixin_39611340
转自个人微信公众号【Memo_Cleon】的统计学习笔记:多元线性回归。这次笔记的内容是多元线性回归的SPSS操作及解读。严格来讲,这种一个因变量多个自变量的线性回归叫多变量线性回归或者多因素线性回归更合适一些。多元或者多变量往往指的是多个因变量。在线性回归中,残差是一个非常重要的概念,它是估计值与观测值之差,表示因变量中除了分析的自变量外其他所有未进入模型的因素引起的变异,即不能由分析自变量估计
- 概率论与数理统计学习笔记(5)——极大似然估计
野指针小李
数学机器学习深度学习概率论人工智能机器学习深度学习
在机器学习与深度学习中,特别是"模型已定,参数未知"的情况下,普遍使用最大似然估计法学习参数。为了后面学习中能够找得到地方复习这些概率论知识,所以这里整理了极大似然估计的笔记,所有参考内容放在最后。对了宝贝儿们,卑微小李的公众号【野指针小李】已开通,期待与你一起探讨学术哟~摸摸大!目录1似然与概率2似然函数3极大似然估计4参考1似然与概率似然(likelihood)与概率(probability)
- 统计学习笔记 - KNN原理、python实现
中杯冰美式
统计学习python机器学习统计学深度学习数据结构
1.KNN实现我的理解就是,找到最接近的K个邻居,根据邻居的类别,确定自己的类别。怎么确定呢?K个邻居进行投票。包括:输入一个新的实例在已知的训练数据集中计算该新的实例与训练数据集中数据点之间的距离按照距离进行排序选择距离最短的也就是最相似的前K个邻居这K个邻居根据自己的类别进行投票,票数最多的类别就是该新的实例的类别。2关于可哈希(hashable)简要的说可哈希的数据类型,即不可变的数据结构(
- 处理效应模型stata实例_重复测量数据分析系列:再谈多层混合效应模型(基于Stata)...
律姐有范儿
处理效应模型stata实例
转自个人微信公众号【Memo_Cleon】的统计学习笔记:重复测量数据分析系列:再谈多层混合效应模型(基于Stata)。感觉从来没有一个模型有这么多的名字。多层混合效应模型(MultilevelMixed-EffectLinearModel);多水平模型(MultilevelModel),分层线性模型(HierarchicalLinearModel);混合效应模型(MixedEffectModel
- 【李航统计学习笔记】第四章:朴素贝叶斯
西风瘦马1912
李航统计学习笔记学习算法机器学习
(尾巴:补充一些例子)4.1直观理解条件概率例子4.1:女朋友和妈妈掉河里了,路人拿出来3颗豆,两颗红豆1颗绿豆。如果我抽中红豆救女朋友,抽中绿豆救妈妈。我和路人各自抽了一颗,路人发现自己抽中的是绿豆,他想用剩下的那颗和我换,我换不换?换不换豆女朋友活下去的概率一样吗?直觉来讲:换不换豆我抽中红豆的概率应该都是1/31/31/3。这时路人跟我说他的是绿豆,排除一颗,我抽中红豆的概率是1/21/21
- 概率论与数理统计学习笔记(6)——分布律,分布函数,密度函数
野指针小李
数学概率论分布律分布函数密度函数
对了宝贝儿们,卑微小李的公众号【野指针小李】已开通,期待与你一起探讨学术哟~摸摸大!目录1离散型随机变量1.1(0-1)分布1.2伯努利试验1.3二项分布1.4几何分布1.5泊松分布2.连续型随机变量2.1分布函数与概率密度函数2.2均匀分布2.3指数分布2.4正态分布2.4.1标准正态分布2.4.2一般正态分布References1离散型随机变量离散型随机变量指的是取到的值时有限个或者可列无限多
- 概率论与数理统计学习笔记——第7讲——连续型随机变量(2.5.4指数分布及其与泊松分布的关系)
预见未来to50
数学(高数线代概率论)Foundation
1.指数分布的定义2.指数分布的分布函数3.指数分布的重要性质——无记忆性4.指数分布的应用示例——元器件的寿命与其已使用无关(指数分布又被称为永远年轻分布)5.泊松分布与指数分布的关系6.指数分布的应用示例
- 统计学习笔记-第7章 支持向量机
madao10086+
统计学习方法笔记机器学习算法支持向量机
第七章支持向量机(SupportVectorMachines,SVM)前言支持向量机这部分的知识点断断续续看了一周,看的头疼,至今仍有许多疑惑。在理解透彻之前先记下部分总结,也包括一些不懂的点,整理一下看的知识点,等有时间再回过头来仔细看看。支持向量机(SupportVectorMachine,SVM)的大名想必大家早有耳闻,其功能强大且用途广泛,既可以进行线性分类也可以进行非线性分类,甚至还可以
- spss正态性检验_R笔记:正态分布的检验
weixin_39622521
spss正态性检验错误:程序包r不存在
转自个人微信公众号【Memo_Cleon】的统计学习笔记:R笔记:正态分布的检验。正态分布的检验方法有很多,我们在>做过介绍,本文介绍的R软件的检验。每种方法在R中都有很多程序包可以实现。示例采用>的数据,是安慰剂组和3个剂量组药物的降脂疗效。从SPSS中载入数据,采用函数spss.get{Hmisc}。spss.get(file,lowernames=FALSE,datevars=NULL,us
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo