RSA算法是一个非对称加密算法,它依赖于数论中的大整数因数分解问题的困难性。在RSA中,加密和解密使用不同的密钥,分别称为公钥和私钥。RSA算法的基本原理包括以下几个步骤:密钥生成:a.选择两个大的质数(p)和(q)。b.计算它们的乘积(n=pq),n的长度就是密钥长度。c.计算欧拉函数(\phi(n)=(p-1)(q-1))。d.选择一个整数(e),使得(1
浅谈欧拉函数
gu_zhou_suo_li_weng
推荐算法算法
定义:首先说一下定义吧,φφφ(n)表示从nnn与xxx互质的数的个数。其中x∈[1,n]x\in[1,n]x∈[1,n]。初始值:φ(n)=nφ(n)=n
欧拉函数及其代码实现
acmakb
蓝桥杯算法c++数论
欧拉函数:欧拉函数定义:欧拉函数是指对于一个正整数n,小于等于n且和n互质的正整数(包括1)的个数,记作φ(n)。例如φ(8)=4,因为1,3,5,7均和8互质。性质:当n是质数的时候,显然有φ(n)=n-1.规定:φ(1)=1.但是如果数大了会特别不好求,接下来我们引出欧拉函数计算方法:分解公式n分解质因数后:n=p1^a1×p2^a2×p3^a3…pk^ak,(其中pi为质数)那么φ(n)=n
数论 之 欧拉函数篇
海风许愿
Acm算法c++算法数据结构c++开发语言
欧拉函数定义:1∼N中与N互质的数的个数被称为欧拉函数,记为ϕ(N)公式:若N=p1^a1*p2^a2*…*pk^ak所有的pi都是N的质因数那么ϕ(N)=N*(p1-1)/p1*(p2-1)/p2*…*(pk-1)/pk;性质:性质1:如果n是质数,那么ϕ(n)=n−1,因为只有n本身与它不互质。性质2:如果p,q都是质数,那么ϕ(p∗q)=ϕ(p)∗ϕ(q)=(p−1)∗(q−1)性质3:根据
P9420 [蓝桥杯 2023 国 B] 子 2023 / 双子数--2024冲刺蓝桥杯省一
一只蓝色小鲨鱼
数学动态规划蓝桥杯职场和发展c++数据结构算法
点击跳转例题子2023思路:dp。最开始想着枚举,但是超时,想着优化以下,但是还是不行。那么切换算法,应该是dp:1.f[i]表示当前字符串以2023为第i位的数量方案:如f[0]表示前i个字符串中2的数量,f[1]表示前i个字符串中20的数量,f[2]表示前i个字符串中202的数量,f[3]表示前i个字符串中2023的数量.2.状态转移方程3.初始化4.迭代更新双子数思路:枚举即可,线性筛法,因
2023年12月CCF-GESP编程能力等级认证Python编程五级真题解析
码农StayUp
pytorchpython青少年编程CCFGESP
Python等级认证GESP(1~6级)全部真题・点这里一、单选题(共15题,共30分)第1题通讯卫星在通信网络系统中主要起到()的作用。A:信息过滤B:信号中继C:避免攻击D:数据加密答案:B第2题小杨想编写一个判断任意输入的整数N是否为素数的程序,下面哪个方法不合适?()A:埃氏筛法B:线性筛法C:二分答案D:枚举法答案:C第3题内排序有不同的类别,下面哪种排序算法和冒泡排序是同一类?()A:
蓝桥杯_数学知识_1 (质数筛法 - 分解质因数 - 约数【约数个数 - 约数之和 - 最大公约数】 )
violet~evergarden
算法蓝桥杯c++
文章目录866.试除法判定质数868.筛质数((朴素)埃氏筛法、线性筛法)判断素数埃式筛法(朴素)线性筛法【分解质因数】869.试除法求约数(试除法)870.约数个数871.约数之和872.最大公约数1.数论【每一步都要想时间复杂度,看能不能做】2.组合计数3.高斯消元4.简单博弈论866.试除法判定质数给定n个正整数ai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正
acwing 质数 约数 欧拉函数
honortech
算法
目录质数试除法定质数分解质因数筛质数约数试除法求约数乘积的约数个数最大公约数欧拉函数筛法求欧拉函数和质数试除法定质数boolis_prime(intnum){if(num>n;for(intj=0;j>num;for(inti=2;i1)cout>n;for(inti=0;i>num;vectorret;//包含1和num本身for(intj=1;j>n;for(inti=0;i>num;for(
欧拉函数 笔记
Daniel_1011
笔记
复习:欧拉筛intcnt,prime[10000005],n;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespacestd;intcnt,prime[10000005],n,q,k;boolvis[100000005];voidolaprime(){vis[1]=1;for(inti=2;iusingnamespa
欧拉函数 笔记 2
Daniel_1011
笔记c++
莫比乌斯函数大于1的正整数,只要有平方因子,那么其莫比乌斯函数值就为0。f(n)={1n=1(−1)rnn=p1∗p2∗p3∗...∗pr0elsef(n)=\left\{\begin{matrix}1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n=1\\(-1)^rn~~~~~~n=p1*p2*p3*...*pr\\0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2023年12月CCF-GESP编程能力等级认证Python编程六级真题解析
码农StayUp
python算法青少年编程CCFGESP
Python等级认证GESP(1~6级)全部真题・点这里一、单选题(共15题,共30分)第1题通讯卫星在通信网络系统中主要起到()的作用。A:信息过滤B:信号中继C:避免攻击D:数据加密答案:B第2题小杨想编写一个判断任意输入的整数N是否为素数的程序,下面哪个方法不合适?()A:埃氏筛法B:线性筛法C:二分答案D:枚举法答案:C第3题内排序有不同的类别,下面哪种排序算法和冒泡排序是同一类?()A:
筛素数-线性筛法(考研复试上机知识点)
一只蓝色小鲨鱼
计算机考研复试上机题算法数据结构c++
平常我们使用筛素数的时候,只需要使用欧拉筛法(线性筛法)就行了,因为复杂度是为O(n)的,而且比较好写。代码:intprime[N],cnt;boolst[N];voidget_prime(intn){for(inti=2;i<=n;i++){//如果没有被筛过那么就是素数。if(!st[i])prime[cnt++]=i;//枚举每一个素数for(intj=0;prime[j]<=n/i;j++
算法--数论
长安1108
算法
这里写目录标题质数(素数)定义判断是否为质数暴力写法,试除法基本思想具体写法优化基本思想(时间复杂度根号n)具体写法分解质因数分析题意暴力写法基本思想具体代码优化基本思想(时间复杂度小于等于根号n)具体代码筛质数(区别于判断质数,这个是筛选出来并保存,质数的数目较多)基本思想具体代码优化(埃氏算法)基本思想(时间复杂度约为n)具体代码优化2(线性筛法)基本思想具体代码一级目录二级目录二级目录二级目
CCF-CSP 202312-2 因子化简(Java、C++、Python)
撕得失败的标签
CCF-CSP202312-2ccf-csp试除法线性筛法因子化简
文章目录因子化简题目背景问题描述输入格式输出格式样例输入样例输出样例解释子任务满分代码JavaC++Python线性筛法因子化简题目背景质数(又称“素数”)是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。问题描述小P同学在学习了素数的概念后得知,任意的正整数nnn都可以唯一地表示为若干素因子相乘的形式。如果正整数nnn有mmm个不同的素数因子p1,p2,⋯ ,pmp_1,p_2,
AcWing.873.欧拉函数
Die love 6-feet-under
算法c++数据结构
给定nnn个正整数ai,请你求出每个数的欧拉函数。欧拉函数的定义1∼NNN中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)。若在算数基本定理中,NNN=p1a1p2a2…pmam,则:ϕ(N)ϕ(N)ϕ(N)=NNN×p1−1p1\frac{p1−1}{p1}p1p1−1×p2−1p2\frac{p2−1}{p2}p2p2−1×…×pm−1pm\frac{pm−1}{pm}pmpm−1输入格式
数论 | 质数
一根老麻花
手撕算法算法c++数据结构数论质数
文章目录质数的判定:试除法分解质因数:试除法筛质数朴素做法优化:埃氏筛法优化:线性筛法质数的判定:试除法不推荐i*iusingnamespacestd;intn;boolisPrime(intn){if(n==1)returnfalse;for(inti=2;i>n;for(inti=0;i>a;if(isPrime(a))coutusingnamespacestd;voiddivide(intn
RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
算法学习系列(二十七):欧拉函数、欧拉定理、费马小定理
lijiachang030718
算法算法学习
目录引言一、欧拉函数1.概念2.求每个数的欧拉函数二、线性筛法求欧拉函数三、欧拉定理,费马小定理引言本文主要介绍欧拉函数、线性筛法求欧拉函数,以及公式是怎样推导出来的,并且介绍了欧拉定理,以及费马小定理是怎样被推导出来的。一、欧拉函数1.概念欧拉函数ϕ(N):欧拉函数\phi(N):欧拉函数ϕ(N):1~N中与N互质的数的个数,(互质:公约数只有1的两个自然数)N=p1α1⋅p2α2⋅p3α3⋅⋯
【数学】简化剩余系、欧拉函数、欧拉定理与扩展欧拉定理
OIer-zyh
数学#数论OI数学数论
简化剩余系与完全剩余系略有区别。我们定义数组ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的简化剩余系,当且仅当∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n,有ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),∀1≤i≤n\forall1\lei\len∀1≤i≤n,有gcd(m,ai)=1\gcd(
信息学竞赛中的数学 习题集841-850(10题)
dllglvzhenfeng
程序猿的数学小学生C++编程入门创新算法c++信奥中的数学信息学竞赛中的数学程序员的数学CSP-JC++
P2926[USACO08DEC]PattingHeadsS拍头[USACO08DEC]PattingHeadsS-洛谷P3383【模板】线性筛素数【模板】线性筛素数-洛谷P1835素数密度素数密度-洛谷P1029[NOIP2001普及组]最大公约数和最小公倍数问题[NOIP2001普及组]最大公约数和最小公倍数问题-洛谷P1072[NOIP2009提高组]Hankson的趣味题[NOIP2009
java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
[逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。