数论基础

《数论基础》
基本信息
作者: 潘承洞
丛书名: 现代数学基础
出版社:高等教育出版社
ISBN:9787040364729
上架时间:2013-1-5
出版日期:2012 年12月
开本:16开
页码:192
版次:1-1
所属分类:数学 > 代数,数论及组合理论 > 数论及应用

更多关于 》》》《数论基础》
内容简介
书籍
数学书籍
  《数论基础》由潘承洞先生生前所写的《数论基础》讲义编辑整理而成。全书秉承了潘先生著作的一贯风格,内容由浅入深、循序渐进,既精选紧凑,又全面深刻,同时附有大量的习题。本书内容独具一格,富有启发性,能够引导读者迅速进入数论的核心领域,了解数论最基本的思想和方法。书中定理和结论的证明简洁明快,既注重数论的技巧之美,又清晰地勾勒出数论方法的系统性。全书共分七章,内容包括:整数的可除性,数论函数,素数分布的一些初等结果,同余,二次剩余与gauss互反律,指数、原根和指标,dirichlet特征等。
   《数论基础》可供数学及相关专业的本科生、研究生和教师使用参考,也可供对数论感兴趣的数学爱好者阅读。
目录
《数论基础》
第一章整数的可除性
§1整除,带余数除法
§2最大公约数,最小公倍数§3辗转相除法
§4一次不定方程
§5函数[χ],{χ}
习题
第二章数论函数
§1数论函数举例
§2dirichlet乘积
§3可乘函数
§4阶的估计
§5广义dirichlet乘积
习题
第三章素数分布的一些初等结果
61函数π(χ)
§2 chebyshev定理
§3函数ω(n)与ω(n)
§4 bertrand假设
§5函数m(χ)
.§6函数l(χ)
习题
第四章同余
§1概念及基本性质
§2剩余类及剩余系
§3同余方程的一般概念,一次同余方程
§4孙子定理
§5多项式的(恒等)同余
§6模ρ的高次同余方程
习题
第五章二次剩余与gauss互反律
§1二次剩余
§2 legendre符号
§3 jacobi符号
习题
第六章指数、原根和指标
§1指数和原根
§2原根存在定理
§3模ρα(ρ≥2)简化系的改造
§4指标与指标组
§5二项同余方程
习题
第七章dirichlet特征
§1模为素数幂的特征的定义及其性质
§2任意模的特征的定义及其性质
§3特征和
校后记

本图书信息来源:中国互动出版网

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/16566727/viewspace-752635/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/16566727/viewspace-752635/

你可能感兴趣的:(数论基础)