- [ABC304F] Shift Table(莫比乌斯反演)
yusen_123
数论算法图论c++
题目:https://www.luogu.com.cn/problem/AT_abc304_f思路:容斥原理,莫比乌斯反演应该都可以,我用的是莫比乌斯反演。注意:最好用longlong类型;代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include
- Lcms(莫比乌斯反演)
yusen_123
数论c++算法
题目路径:https://www.luogu.com.cn/problem/AT_agc038_c思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;c
- Array Equalizer(莫比乌斯反演)
yusen_123
数论算法c++
1605E-ArrayEqualizer思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;constintN=2e5+100;#defineLLlon
- 狄利克雷卷积及常见函数与莫比乌斯反演
溶解不讲嘿
数论线性代数笔记
QwQ文章目前没有题目,只有理论知识狄利克雷卷积狄利克雷卷积(DirichletConvolution)在解析数论中是一个非常重要的工具.使用狄利克雷卷积可以很方便地推出一些重要函数和公式,它在信息学竞赛和解析数论中至关重要.狄利克雷卷积是定义在数论函数间的二元运算.数论函数,是指定义域为N\mathbb{N}N(自然数),值域为C\mathbb{C}C(复数)的一类函数,每个数论函数可以视为复数
- 莫比乌斯反演(acwing2702)
yusen_123
数论算法
对于给出的n�个询问,每次求有多少个数对(x,y)(�,�),满足a≤x≤b,c≤y≤d�≤�≤�,�≤�≤�,且gcd(x,y)=kgcd(�,�)=�,gcd(x,y)gcd(�,�)函数为x�和y�的最大公约数。输入格式第一行一个整数n�。接下来n�行每行五个整数,分别表示a、b、c、d、k�、�、�、�、�。输出格式共n�行,每行一个整数表示满足要求的数对(x,y)(�,�)的个数。数据范
- 洛谷p1829(莫比乌斯反演)
yusen_123
数论c++算法数据结构
思路:代码:#define_CRT_SECURE_NO_WARNINGS#include#include#include#includeusingnamespacestd;constdoubleeps=1e-8;constintN=1e7+10;constlonglongmod=20101009;#defineLLlonglongintpre[N],st[N];intn,cn,m;LLmu[N];
- P3704数字表格(莫比乌斯反演)
yusen_123
数论算法
题目背景Doris刚刚学习了fibonacci数列。用fi表示数列的第i项,那么0=0,1=1f0=0,f1=1fn=fn−1+fn−2,n≥2题目描述Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是gcd(i,j),其中gcd(i,j)表示i,j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对109+7取模。输入格式本题单个测试点内
- BZOJ 2440 完全平方数 (容斥+莫比乌斯反演+二分)
_TCgogogo_
数论二分/三分/两点法组合数学BZOJ莫比乌斯反演容斥二分
2440:[中山市选2011]完全平方数TimeLimit:10SecMemoryLimit:128MBSubmit:1673Solved:799[Submit][Status][Discuss]Description小X自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。这天是小X的生日,
- 《算法竞赛进阶指南》------数论习题篇1
axtices
数论算法数论
文章目录练习9:XORBZOJ2115(*线性基。求图中异或和,可谓经典中的经典)练习10:新Nim游戏BZOJ3105(*NIM进阶版NIM博弈+线性基)练习11:排列计数BZOJ4517(*错位排序)练习12:SkyCode(*容斥原理$莫比乌斯反演经典)练习16魔法珠CH3B16(SG博弈)练习17:GeorgiaandBob(*NIM博弈三定理)**错误思路**:**NIM博弈三定理**:
- YYHS-NOIP模拟赛-gcd
weixin_33845477
题解这道题题解里说用莫比乌斯反演做(我这个蒟蒻怎么会做呢)但是不会,所以我们另想方法,这里我们用容斥来做我们先把500000以内的所有质数筛出来每次读入编号的时候,先把编号对应的这个数分解质因数然后我们dfs枚举这个数的质因子取或不取,我们用t来表示取的质因子个数,如果t为奇数,ans就加,反之就减(容斥原理)1#include2#defineN2000053#defineM5000054#def
- 2019.6.summary
LMB_001
刷题总结刷题总结
2019.6.1BZOJ3028:食物生成函数题,母函数乘起来就好了BZOJ3544:[ONTAK2010]CreativeAccounting嗯,就是可以用set维护前缀和,取后继或最小数贪心就好啦BZOJ2820:YY的GCD莫比乌斯反演BZOJ4173:数学https://blog.csdn.net/zhhx2001/article/details/52300924由这个blog里的证明我们
- 莫比乌斯函数
林苏泽
数论
目录前导积性函数莫比乌斯函数莫比乌斯反演莫比乌斯反演定理莫比乌斯反演定理证明莫比乌斯反演另一性质(与欧拉函数有关)前导要学习莫比乌斯函数需要学习到积性函数,深度理解欧拉筛。先说说什么是积性函数吧。积性函数其实积性函数非常好理解,定义积性函数:若gcd(a,b)=1,且满足f(ab)=f(a)f(b),则称f(x)为积性函数完全积性函数:对于任意正整数a,b,都满足f(ab)=f(a)f(b),则称
- 积性函数及其初级应用
SMT0x400
学习算法数学
积性函数及其初级应用垃圾博客,我本地LaTeX挂了,艹大量内容和入门方式都参考了莫比乌斯反演与数论函数。感谢CMD大爷!0xFF前置知识1.质数及其判定,质因数及其分解小学课本里面讲过质数的定义了,不细讲。分解质因数也是基本功。2.筛法同学们想必都会埃氏筛法吧,即对于每一个质数枚举其倍数筛除整个值域内的所有数。如果你学得更远一点,那么你会使用欧拉筛法。它的算法思想这里不再赘述。后面的一切练习题都是
- 数论知识点总结(一)
Mark 85
数学数论算法数据结构
文章目录目录文章目录前言一、数论有哪些二、题法混讲1.素数判断,质数,筛法2.最大公约数和最小公倍数3.快速幂4.约数前言现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣!一、数论有哪些数论原根,素数判断,质数,筛法最大公约数,gcd扩展欧几里德算法,快速幂,exgcd,不定方程,进制,中国剩余定理,CRT,莫比乌斯反演,逆元,Lucas定理,类欧几里得算法,调和级数
- HAOI2011 Problem b
SHOJYS
算法c++
Problemblink做法:莫比乌斯反演。思路:对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(x,y)函数为xxx和yyy的最大公约数。我们设f(n)=∑i=1x∑j=1y
- HDU 6715算术 莫比乌斯反演
9fe5164d41b8
@[toc]题意,求。链接:hdu6715思路方法一:打表得出:进一步按套路优化,提出,令得:首先这个东西是,是一个积性函数,所以可以筛出来。这个东西可以按分别预处理出来,预处理的复杂度和埃式筛一样是,空间复杂度也是。最后上面这个式子就可以求和了。HDU数据证明,不预处理第二点更快。。。方法二:已知又因为:因此:因为当不为时:而当为时,自然也是,所以也不会影响下面这个式子:接下来的步骤和方法一就相
- 莫比乌斯反演
Evan_song1234
数学算法与数据结构算法
莫比乌斯反演主要用于快速计算一些阴间式子(包含gcd(i,j)\gcd(i,j)gcd(i,j)等)。至于如何应用,往下看。莫比乌斯函数μ(x)={1x=10n含有平方因子(−1)kk为n本质不同质因子个数\mu(x)=\begin{cases}1&x=1\\0&n含有平方因子\\(-1)^k&k为n本质不同质因子个数\end{cases}μ(x)=⎩⎨⎧10(−1)kx=1n含有平方因子k为n
- 莫比乌斯反演
WangLi&a
莫比乌斯反演狄利克雷卷积杜教筛数论分块数论
莫比乌斯反演定义莫比乌斯反演公式:[n=1]=∑d∣nμ(d)[n=1]=\underset{d|n}\sum\mu(d)[n=1]=d∣n∑μ(d)其他几种莫比乌斯反演的形式:标准形式:f(n)=∑d∣ng(d)⇔g(n)=∑d∣nμ(d)f(nd)f(n)=\underset{d|n}\sumg(d)\Leftrightarrowg(n)=\underset{d|n}\sum\mu(d)f(\
- 【Codeforces】 CF1436F Sum Over Subsets
Farmer_D
Codeforces算法
题目链接CF方向Luogu方向题目解法首先考虑消去gcdgcdgcd的限制考虑莫比乌斯反演优先枚举ddd可得答案为∑d=1nμ(d)∗ans(d)\sum_{d=1}^{n}\mu(d)*ans(d)∑d=1nμ(d)∗ans(d)其中ans(d)ans(d)ans(d)是所有aia_iai是ddd的倍数组成的答案令aia_iai为ddd的倍数的所有数的可重集为SSS考虑∑x∈Ax∗∑y∈By=∑
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- C/C++数论/数学算法总结(关于数学知识以及一些比较重要的算法)
Xq_23
大数算法编程语言
总结C/C++关于数学知识以及一些比较重要的算法1.数论整数型问题:整除、最大公约数、最小公倍数、欧几里得算法、扩展欧几里得算法.素数问题:素数判断、区间素数统计.同余问题:模运算、同于方程、快速幂、中国剩余定理、逆元、整数分解、同余定理.不定方程.乘性函数:欧拉函数、伪随机数、莫比乌斯反演.2.组合数学排列组合:技术原理、特殊排列、排列生成、组合生成.母函数:普通型、指数型.递推关系:斐波那契数
- 「SDOI2008」仪仗队
L('ω')┘脏脏包└('ω')」
题解题解
目录1.介绍2.分析3.代码1.有注释版2.copy专用1.介绍(同上,教练把lg禁了,暂时给不了网址+还我LG!!!)怎么说呢,弱化forest(forest网址下次补上)就这一个弱化,就从莫比乌斯反演欧拉函数2.分析看一看图片其实我们可以沿着对角线就是一下把它变成、与(截屏截的好丑呀qwq)实际上,我们只需要求的总数给它乘二加三(因为有(1,0),(1,1),(0,1))即可问题又来了:怎么求
- 算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演
jeefy
#狄利克雷卷积和莫比乌斯反演>看了《组合数学》,再听了学长讲的……感觉三官被颠覆……[TOC]##狄利克雷卷积如此定义:$$(f*g)(n)=\sum_{xy=n}f(x)g(y)$$或者可以写为$$(f*g)(n)=\sum_{d|n}f(d)g
- [HAOI2011]Problem b(莫比乌斯反演)
何况虚度光阴
数论c++算法
[HAOI2011]Problemb题目链接:https://www.luogu.com.cn/problem/P2522题目描述对于给出的nnn个询问,每次求有多少个数对(x,y)(x,y)(x,y),满足a≤x≤ba\lex\leba≤x≤b,c≤y≤dc\ley\ledc≤y≤d,且gcd(x,y)=k\gcd(x,y)=kgcd(x,y)=k,gcd(x,y)\gcd(x,y)gcd(
- P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
何况虚度光阴
数论c++图论算法
[国家集训队]Crash的数字表格/JZPTAB题目描述今天的数学课上,Crash小朋友学习了最小公倍数(LeastCommonMultiple)。对于两个正整数aaa和bbb,lcm(a,b)\text{lcm}(a,b)lcm(a,b)表示能同时整除aaa和bbb的最小正整数。例如,lcm(6,8)=24\text{lcm}(6,8)=24lcm(6,8)=24。回到家后,Crash还在想着课
- 莫比乌斯反演-奇妙的欧拉
An_Account
让我们从一道题开始求\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j),(n首先对gcd(i,j)分类,有\sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)=\sum_{k=1}^{n}k\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k]同时除以k=\sum_{k=1}^{n}k\sum_{i=1}^{\lfloor\fra
- 数学/数论专题:莫比乌斯函数与欧拉函数
Plozia
学习笔记+专项训练数学/数论算法
数学/数论专题:莫比乌斯函数与欧拉函数(进阶)0.前言1.前置知识2.正文3.总结4.参考资料0.前言本篇文章会从狄利克雷卷积的角度,讨论莫比乌斯函数与欧拉函数的相关性质。或者说就是利用狄利克雷卷积重新证一遍这两个函数的性质以及弄出几个新的式子。其实我觉得这块还是挺妙的,也可能是我做DP和数据结构做疯了(1.前置知识首先您需要知道欧拉函数,狄利克雷卷积,莫比乌斯函数+莫比乌斯反演。如果不知道,可以
- 【笔记】莫比乌斯反演-从入门到入土
inferior_hjx
笔记算法c++
上一篇:莫比乌斯反演(前置知识)文章目录莫比乌斯反演关于反演莫比乌斯函数定义性质莫比乌斯反演公式公式1公式2整除分块引入关于整除分块基础推导简单扩展莫比乌斯反演的应用例1:证明下式成立例2:YY的GCD例3:Problemb例4:完全平方数例5:约数个数和总结莫比乌斯反演正片开始关于反演顾名思义,反演就是反向演变,举个栗子,若有F(n)=k⋅f(n)F(n)=k\cdotf(n)F(n)=k⋅f(
- 【笔记】莫比乌斯反演(前置知识)
inferior_hjx
笔记c++算法
文章目录前言前置知识模定义性质整除定义性质同余定义性质逆元定义性质积性函数定义常见的积性函数证明欧拉函数为积性函数例1:欧拉函数线性筛例2:莫比乌斯函数线性筛前言由于文章正文太长,不得不分几篇博客。本篇为数论基础内容,学习过数论的可以跳过。最近学了莫比乌斯反演和一点狄利克雷卷积,感觉很难,也是看了很多博客才有点明,写一篇博客帮助自己理解。由于数论大多基于正整数讨论,故除特殊说明外,本文所有变量都为
- 莫比乌斯反演经典例题(1)
__LazyCat__
莫比乌斯反演算法c++
链接:P2257YY的GCD-洛谷|计算机科学教育新生态(luogu.com.cn)题意:给定n,m,求∑i=1n∑j=1m[gcd(i,j)==prime]\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==prime]∑i=1n∑j=1m[gcd(i,j)==prime]。题解:首先枚举质数可化为∑d∈primemin(n,m)∑i=1n/d∑j=1m/d[gcd(i
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR