ORB-SLAM2从理论到代码实现(五):ORBmatcher.cc程序详解

本人邮箱 [email protected],欢迎交流!转载请注明地址https://blog.csdn.net/qq_20123207/article/details/82502207

在上篇博客中,我主要写了多视图几何中的知识。本篇博客我们一起学习ORBmatcher.CC。

1.主要方法介绍

  • SearchByProjection(Frame &F, const vector &vpMapPoints, const float th)
函数功能 SearchByProjection函数利用将相机坐标系下的Location MapPoints投影到图像坐标系,,在其投影点附近根据描述子距离选取匹配,由此增加当前帧的MapPoints 
 
参数说明  
F 当前帧
vpMapPoints  Local MapPoints
th   搜索半径的因子
返回值 成功匹配的数量

 

ORB-SLAM2从理论到代码实现(五):ORBmatcher.cc程序详解_第1张图片

 

int ORBmatcher::SearchByProjection(Frame &F, const vector &vpMapPoints, const float th)
{
    int nmatches=0;//匹配数量
    const bool bFactor = th!=1.0;//阈值
    for(size_t iMP=0; iMPmbTrackInView)//在SearchLocalPoints()中已经将Local MapPoints
//重投影(isInFrustum())到当前帧,并标记了这些点是否在当前帧的视野中即mbTrackInView         if(pMP->isBad())//如果质量不好不用
            continue;
        // 通过距离预测的金字塔层数,该层数相对于当前的帧
        const int &nPredictedLevel = pMP->mnTrackScaleLevel;
        // The size of the window will depend on the viewing direction
        // 搜索窗口的大小取决于视角, 若当前视角和平均视角夹角接近0度时, r取一个较小的值
        float r = RadiusByViewingCos(pMP->mTrackViewCos);
        // 如果需要进行更粗糙的搜索,则增大范围
        if(bFactor)
            r*=th;
        // 通过投影点(投影到当前帧,见isInFrustum())以及搜索窗口和预测的尺度进行搜索, 找出附近的兴趣点
        const vector vIndices =
                F.GetFeaturesInArea(pMP->mTrackProjX,pMP->mTrackProjY,r*F.mvScaleFactors[nPredictedLevel],nPredictedLevel-1,nPredictedLevel);
        if(vIndices.empty())//没找到兴趣点
            continue;
        const cv::Mat MPdescriptor = pMP->GetDescriptor();//求描述子
        int bestDist=256;
        int bestLevel= -1;
        int bestDist2=256;
        int bestLevel2 = -1;
        int bestIdx =-1 ;
        // Get best and second matches with near keypoints
        for(vector::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;

            // 如果Frame中的该兴趣点已经有对应的MapPoint了,则退出该次循环
            if(F.mvpMapPoints[idx])
                if(F.mvpMapPoints[idx]->Observations()>0)
                    continue;
            if(F.mvuRight[idx]>0)
            {
                const float er = fabs(pMP->mTrackProjXR-F.mvuRight[idx]);
                if(er>r*F.mvScaleFactors[nPredictedLevel])
                  continue;
            }
            const cv::Mat &d = F.mDescriptors.row(idx);
            const int dist = DescriptorDistance(MPdescriptor,d);//求取描述子距离
            // 根据描述子寻找描述子距离最小和次小的特征点
            if(distmfNNratio*bestDist2)
                continue;

            F.mvpMapPoints[bestIdx]=pMP; // 为Frame中的兴趣点增加对应的MapPoint
            nmatches++;
        }

    }

    return nmatches;

}

函数功能 通过词袋(bow)对关键帧(pKF)和当前帧(F)中的特征点进行快速匹配,不属于同一节点(node)的特征点直接跳过匹配,对属于同一节点(node0的特征点通过描述子距离进行匹配,根据匹配,用关键帧(pKF)中特征点对应的MapPoint更新F中特征点对应的MapPoints,通过距离阈值、比例阈值和角度投票进行剔除误匹配
pKF 关键帧 
F 当前帧
vpMapPointMatches  当前帧中MapPoints对应的匹配,NULL表示未匹配
返回值  成功匹配的数量

 

ORB-SLAM2从理论到代码实现(五):ORBmatcher.cc程序详解_第2张图片

int ORBmatcher::SearchByBoW(KeyFrame* pKF,Frame &F, vector &vpMapPointMatches)

{
    const vector vpMapPointsKF = pKF->GetMapPointMatches();
    vpMapPointMatches = vector(F.N,static_cast(NULL));
    const DBoW2::FeatureVector &vFeatVecKF = pKF->mFeatVec;
    int nmatches=0;//匹配点个数
    vector rotHist[HISTO_LENGTH];
    for(int i=0;ifirst == Fit->first) //步骤1:分别取出属于同一node的ORB特征点(只有属于同一node,才有可能是匹配点)
        {
            const vector vIndicesKF = KFit->second;
            const vector vIndicesF = Fit->second;
            // 步骤2:遍历KF中属于该node的特征点
            for(size_t iKF=0; iKFisBad())
                    continue;
                const cv::Mat &dKF= pKF->mDescriptors.row(realIdxKF); // 取出KF中该特征对应的描述子
                int bestDist1=256; // 最好的距离(最小距离)
                int bestIdxF =-1 ;
                int bestDist2=256; // 倒数第二好距离(倒数第二小距离)

                // 步骤3:遍历F中属于该node的特征点,找到了最佳匹配点
                for(size_t iF=0; iF(bestDist1)(bestDist2))
                    {
                        // 步骤5:更新特征点的MapPoint
                        vpMapPointMatches[bestIdxF]=pMP;
                        const cv::KeyPoint &kp = pKF->mvKeysUn[realIdxKF];
                        if(mbCheckOrientation)
                        {
                            // trick!
                            // angle:每个特征点在提取描述子时的旋转主方向角度,如果图像旋转了,这个角度将发生改变
                            // 所有的特征点的角度变化应该是一致的,通过直方图统计得到最准确的角度变化值
                            float rot = kp.angle-F.mvKeys[bestIdxF].angle;// 该特征点的角度变化值
                            if(rot<0.0)
                                rot+=360.0f;
                            int bin = round(rot*factor);// 将rot分配到bin组
                            if(bin==HISTO_LENGTH)
                                bin=0;
                            assert(bin>=0 && binfirst < Fit->first)
        {
            KFit = vFeatVecKF.lower_bound(Fit->first);
        }
        else
        {
            Fit = F.mFeatVec.lower_bound(KFit->first);
        }
    }
    // 根据方向剔除误匹配的点
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;
        // 计算rotHist中最大的三个的index
        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);
        for(int i=0; i(NULL);
                nmatches--;
            }
        }
    }

    return nmatches;
}

 

SearchByProjection(KeyFrame* pKF, cv::Mat Scw, const vector &vpPoints, vector &vpMatched, int th) 

函数功能 根据Sim3变换,将每个vpPoints投影到pKF上,并根据尺度确定一个搜索区域,根据该MapPoint的描述子与该区域内的特征点进行匹配,如果匹配误差小于TH_LOW即匹配成功,更新vpMatched
参数说明  
pKF 关键帧
Scw Sim3矩阵,即变换矩阵
vpPoints MapPoint
vpMatched MapPoint的匹配点
th   搜索半径的因子
返回值 成功匹配的数量

  

int ORBmatcher::SearchByProjection(KeyFrame* pKF, cv::Mat Scw, const vector &vpPoints, vector &vpMatched, int th)
{
    // Get Calibration Parameters for later projection
    //获取相机内参
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;
    // Decompose Scw
    // 分解Scw矩阵,可以自己推一下公式
    cv::Mat sRcw = Scw.rowRange(0,3).colRange(0,3);
    const float scw = sqrt(sRcw.row(0).dot(sRcw.row(0)));// 计算得到尺度s
    cv::Mat Rcw = sRcw/scw;
    cv::Mat tcw = Scw.rowRange(0,3).col(3)/scw;// pKF坐标系下,世界坐标系到pKF的位移,方向由世界坐标系指向pKF
    cv::Mat Ow = -Rcw.t()*tcw;// 世界坐标系下,pKF到世界坐标系的位移(世界坐标系原点相对pKF的位置),方向由pKF指向世界坐标系
    // Set of MapPoints already found in the KeyFrame
    // 使用set类型,并去除没有匹配的点,用于快速检索某个MapPoint是否有匹配
    set spAlreadyFound(vpMatched.begin(), vpMatched.end());
    spAlreadyFound.erase(static_cast(NULL));//Null代表没匹配
    int nmatches=0;//成功匹配个数
   // For each Candidate MapPoint Project and Match
    // 遍历所有的MapPoints
    for(int iMP=0, iendMP=vpPoints.size(); iMPisBad() || spAlreadyFound.count(pMP))
            continue;
        // Get 3D Coords.
        //获取三维坐标
        cv::Mat p3Dw = pMP->GetWorldPos();
        // Transform into Camera Coords.
        //转化到相机坐标系
        cv::Mat p3Dc = Rcw*p3Dw+tcw;
        // Depth must be positive
        //求得的深度值必须为正
        if(p3Dc.at(2)<0.0)
            continue;
        // Project into Image投影到图片上
        const float invz = 1/p3Dc.at(2);
        const float x = p3Dc.at(0)*invz;
        const float y = p3Dc.at(1)*invz;
        const float u = fx*x+cx;
        const float v = fy*y+cy;
        // Point must be inside the image不在图片上的点去掉
        if(!pKF->IsInImage(u,v))
           continue;
        // Depth must be inside the scale invariance region of the point
        // 判断距离是否在尺度协方差范围内
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist = cv::norm(PO);
        if(distmaxDistance)//超出范围
            continue;
        // Viewing angle must be less than 60 deg视角必须小于60度
        cv::Mat Pn = pMP->GetNormal();
        if(PO.dot(Pn)<0.5*dist)
            continue;
        int nPredictedLevel = pMP->PredictScale(dist,pKF);
        // Search in a radius
        // 根据尺度确定搜索半径
        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];
        const vector vIndices = pKF->GetFeaturesInArea(u,v,radius);
        if(vIndices.empty())
          continue;
        // Match to the most similar keypoint in the radius匹配最相似的点
        const cv::Mat dMP = pMP->GetDescriptor();
        int bestDist = 256;
        int bestIdx = -1;
        // 遍历搜索区域内所有特征点,与该MapPoint的描述子进行匹配
        for(vector::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)
        {
            const size_t idx = *vit;
            if(vpMatched[idx])
                continue;
            const int &kpLevel= pKF->mvKeysUn[idx].octave;
            if(kpLevelnPredictedLevel)
               continue;
            const cv::Mat &dKF = pKF->mDescriptors.row(idx);
            const int dist = DescriptorDistance(dMP,dKF);
            if(dist
  •  SearchByBoW(KeyFrame *pKF1, KeyFrame *pKF2, vector &vpMatches12)
函数功能 通过词包,对关键帧的特征点进行跟踪,该函数用于闭环检测时两个关键帧间的特征点匹配,通过bow对pKF和F中的特征点进行快速匹配(不属于同一node的特征点直接跳过匹配),对属于同一node的特征点通过描述子距离进行匹配,根据匹配,更新vpMatches12
pKF1  KeyFrame1
pKF2  KeyFrame2
vpMatches12 pKF2中与pKF1匹配的MapPoint,null表示没有匹配
返回值 成功匹配的数量

 

程序和上面讲解的类似,略。有问题联系[email protected]

  • SearchForTriangulation(KeyFrame *pKF1, KeyFrame *pKF2, cv::Mat F12,vector > &vMatchedPairs, const bool bOnlyStereo)
函数功能 利用基本矩阵F12,在两个关键帧之间未匹配的特征点中产生新的3d点
 
参数说明  
pKF1 关键帧1
pKF2  关键帧2
F12 基础矩阵
vMatchedPairs 存储匹配特征点对,特征点用其在关键帧中的索引表示
bOnlyStereo 在双目和rgbd情况下,要求特征点在右图存在匹配
返回值 成功匹配的数量

ORB-SLAM2从理论到代码实现(五):ORBmatcher.cc程序详解_第3张图片

int ORBmatcher::SearchForTriangulation(KeyFrame *pKF1, KeyFrame *pKF2, cv::Mat F12,
                                       vector > &vMatchedPairs, const bool bOnlyStereo)
{
    const DBoW2::FeatureVector &vFeatVec1 = pKF1->mFeatVec;//关键帧1的特征向量
    const DBoW2::FeatureVector &vFeatVec2 = pKF2->mFeatVec;//关键帧2的特征向量
    // Compute epipole in second image
    // 计算KF1的相机中心在KF2图像平面的坐标,即极点坐标
    cv::Mat Cw = pKF1->GetCameraCenter(); // twc1
    cv::Mat R2w = pKF2->GetRotation();    // Rc2w
    cv::Mat t2w = pKF2->GetTranslation(); // tc2w
    cv::Mat C2 = R2w*Cw+t2w; // tc2c1 KF1的相机中心在KF2坐标系的表示
    const float invz = 1.0f/C2.at(2);
    // 步骤0:得到KF1的相机光心在KF2中的坐标(极点坐标),即投影
    const float ex =pKF2->fx*C2.at(0)*invz+pKF2->cx;
    const float ey =pKF2->fy*C2.at(1)*invz+pKF2->cy;
    // Find matches between not tracked keypoints查找未跟踪关键点之间的匹配 
    // Matching speed-up by ORB Vocabulary使用词袋加速
    // Compare only ORB that share the same node只比较同一节点下的ORB 
    int nmatches=0;
    vector vbMatched2(pKF2->N,false);
    vector vMatches12(pKF1->N,-1);
    vector rotHist[HISTO_LENGTH];
    for(int i=0;ifirst对应node编号,f1it->second对应属于该node的所有特特征点编号
    DBoW2::FeatureVector::const_iterator f1it = vFeatVec1.begin();
    DBoW2::FeatureVector::const_iterator f2it = vFeatVec2.begin();
    DBoW2::FeatureVector::const_iterator f1end = vFeatVec1.end();
    DBoW2::FeatureVector::const_iterator f2end = vFeatVec2.end();
    // 步骤1:遍历pKF1和pKF2中的node节点
    while(f1it!=f1end && f2it!=f2end)
    {
        // 如果f1it和f2it属于同一个node节点
        if(f1it->first == f2it->first)
        {
           // 步骤2:遍历该node节点下(f1it->first)的所有特征点
            for(size_t i1=0, iend1=f1it->second.size(); i1second[i1];
                // 步骤2.1:通过特征点索引idx1在pKF1中取出对应的MapPoint
                MapPoint* pMP1 = pKF1->GetMapPoint(idx1);
                // If there is already a MapPoint skip
                // 由于寻找的是未匹配的特征点,所以pMP1应该为NULL
                if(pMP1)
                   continue;
                // 如果mvuRight中的值大于0,表示是双目,且该特征点有深度值
                const bool bStereo1 = pKF1->mvuRight[idx1]>=0;
                if(bOnlyStereo)
                    if(!bStereo1)
                        continue;                
                // 步骤2.2:通过特征点索引idx1在pKF1中取出对应的特征点
                const cv::KeyPoint &kp1 = pKF1->mvKeysUn[idx1];                
                // 步骤2.3:通过特征点索引idx1在pKF1中取出对应的特征点的描述子
                const cv::Mat &d1 = pKF1->mDescriptors.row(idx1);      
                int bestDist = TH_LOW;
              int bestIdx2 = -1;       
                // 步骤3:遍历该node节点下(f2it->first)的所有特征点
                for(size_t i2=0, iend2=f2it->second.size(); i2second[i2];                   
                    // 步骤3.1:通过特征点索引idx2在pKF2中取出对应的MapPoint
                    MapPoint* pMP2 = pKF2->GetMapPoint(idx2);                  

                    // If we have already matched or there is a MapPoint skip
                    // 如果pKF2当前特征点索引idx2已经被匹配过或者对应的3d点非空
                    // 那么这个索引idx2就不能被考虑
                    if(vbMatched2[idx2] || pMP2)
                      continue;
                    const bool bStereo2 = pKF2->mvuRight[idx2]>=0;
                    if(bOnlyStereo)
                        if(!bStereo2)
                            continue;                    
                    // 步骤3.2:通过特征点索引idx2在pKF2中取出对应的特征点的描述子
                    const cv::Mat &d2 = pKF2->mDescriptors.row(idx2);                  
                    // 计算idx1与idx2在两个关键帧中对应特征点的描述子距离
                    const int dist = DescriptorDistance(d1,d2);               
                    if(dist>TH_LOW || dist>bestDist)
                        continue;
                    // 步骤3.3:通过特征点索引idx2在pKF2中取出对应的特征点
                    const cv::KeyPoint &kp2 = pKF2->mvKeysUn[idx2];
                   if(!bStereo1 && !bStereo2)
                    {
                        const float distex = ex-kp2.pt.x;
                        const float distey = ey-kp2.pt.y;
                        // 该特征点距离极点太近,表明kp2对应的MapPoint距离pKF1相机太近
                        if(distex*distex+distey*distey<100*pKF2->mvScaleFactors[kp2.octave])
                            continue;
                    }
                    // 步骤4:计算特征点kp2到kp1极线(kp1对应pKF2的一条极线)的距离是否小于阈值
                    if(CheckDistEpipolarLine(kp1,kp2,F12,pKF2))
                    {
                       bestIdx2 = idx2;
                      bestDist = dist;
                   }

                }

                // 步骤1、2、3、4总结下来就是:将左图像的每个特征点与右图像同一node节点的所有特征点
                // 依次检测,判断是否满足对极几何约束,满足约束就是匹配的特征点
               // 详见SearchByBoW(KeyFrame* pKF,Frame &F, vector &vpMapPointMatches)函数步骤4
               if(bestIdx2>=0)
                {
                    const cv::KeyPoint &kp2 = pKF2->mvKeysUn[bestIdx2];
                    vMatches12[idx1]=bestIdx2;
                    nmatches++;
                   if(mbCheckOrientation)
                    {
                        float rot = kp1.angle-kp2.angle;
                        if(rot<0.0)
                            rot+=360.0f;
                        int bin = round(rot*factor);
                        if(bin==HISTO_LENGTH)
                            bin=0;
                        assert(bin>=0 && binfirst < f2it->first)
        {
            f1it = vFeatVec1.lower_bound(f2it->first);
        }
        else
        {
           f2it = vFeatVec2.lower_bound(f1it->first);
        }
    }
    if(mbCheckOrientation)
    {
        int ind1=-1;
        int ind2=-1;
        int ind3=-1;
        ComputeThreeMaxima(rotHist,HISTO_LENGTH,ind1,ind2,ind3);
        for(int i=0; i
  • Fuse(KeyFrame *pKF, const vector &vpMapPoints, const float th)
函数功能 将MapPoints投影到关键帧pKF中,并判断是否有重复的MapPoints,1.如果MapPoint能匹配关键帧的特征点,并且该点有对应的MapPoint,那么将两个MapPoint合并(选择观测数多的),2.如果MapPoint能匹配关键帧的特征点,并且该点没有对应的MapPoint,那么为该点添加MapPoint
参数说明  
pKF 相邻关键帧
vpMapPoints  当前关键帧的MapPoints
th 搜索半径的因子
返回值 重复MapPoints的数量
int ORBmatcher::Fuse(KeyFrame *pKF, const vector &vpMapPoints, const float th)
{   //获取旋转R,和平移t
    cv::Mat Rcw = pKF->GetRotation();
    cv::Mat tcw = pKF->GetTranslation();
     //获取相机内参
    const float &fx = pKF->fx;
    const float &fy = pKF->fy;
    const float &cx = pKF->cx;
    const float &cy = pKF->cy;
    const float &bf = pKF->mbf;
    //获取相机中心
    cv::Mat Ow = pKF->GetCameraCenter();
    int nFused=0;//重复MapPoints的数量
    const int nMPs = vpMapPoints.size();
    // 遍历所有的MapPoints
    for(int i=0; iisBad() || pMP->IsInKeyFrame(pKF))
            continue;
        cv::Mat p3Dw = pMP->GetWorldPos();//获取MP在世界坐标系3D坐标
        cv::Mat p3Dc = Rcw*p3Dw + tcw;//求取MP在相机坐标系下的坐标
        // Depth must be positive深度值必须为正
        if(p3Dc.at(2)<0.0f)
            continue;
        const float invz = 1/p3Dc.at(2);//1/z
        const float x = p3Dc.at(0)*invz;//这几部都是投影公式,见SLAM14讲86页
        const float y = p3Dc.at(1)*invz;
        const float u = fx*x+cx;
        const float v = fy*y+cy;// 步骤1:得到MapPoint在图像上的投影坐标
        // Point must be inside the image
        if(!pKF->IsInImage(u,v))//如果Point不在图片内
            continue;
        const float ur = u-bf*invz;//公式z=fb/d,d=ul-ur,这里ul即u
        const float maxDistance = pMP->GetMaxDistanceInvariance();
        const float minDistance = pMP->GetMinDistanceInvariance();
        cv::Mat PO = p3Dw-Ow;
        const float dist3D = cv::norm(PO);
        // Depth must be inside the scale pyramid of the image深度必须在图像的尺度金字塔内
        if(dist3DmaxDistance )
           continue;
        // Viewing angle must be less than 60 deg视角必须小于60度 

        cv::Mat Pn = pMP->GetNormal();
        if(PO.dot(Pn)<0.5*dist3D)
            continue;
        int nPredictedLevel = pMP->PredictScale(dist3D,pKF);
        // Search in a radius

        const float radius = th*pKF->mvScaleFactors[nPredictedLevel];// 步骤2:根据MapPoint的深度确定尺度,从而确定搜索范围
        const vector vIndices = pKF->GetFeaturesInArea(u,v,radius);
        if(vIndices.empty())
            continue;
        // Match to the most similar keypoint in the radius与半径中最相似的关键点匹配 
        const cv::Mat dMP = pMP->GetDescriptor();
        int bestDist = 256;
        int bestIdx = -1;
        for(vector::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++)// 步骤3:遍历搜索范围内的features
        {
            const size_t idx = *vit;
            const cv::KeyPoint &kp = pKF->mvKeysUn[idx];
            const int &kpLevel= kp.octave;
            if(kpLevelnPredictedLevel)
                continue;
            // 计算MapPoint投影的坐标与这个区域特征点的距离,如果偏差很大,直接跳过特征点匹配
            if(pKF->mvuRight[idx]>=0)
            {
                // Check reprojection error in stereo
                const float &kpx = kp.pt.x;
                const float &kpy = kp.pt.y;
                const float &kpr = pKF->mvuRight[idx];
                const float ex = u-kpx;
                const float ey = v-kpy;
                const float er = ur-kpr;
                const float e2 = ex*ex+ey*ey+er*er;
                if(e2*pKF->mvInvLevelSigma2[kpLevel]>7.8)
                    continue;
            }
            else
            {
                const float &kpx = kp.pt.x;
                const float &kpy = kp.pt.y;
                const float ex = u-kpx;
                const float ey = v-kpy;
                const float e2 = ex*ex+ey*ey;
                // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
                if(e2*pKF->mvInvLevelSigma2[kpLevel]>5.99)
                    continue;
            }

            const cv::Mat &dKF = pKF->mDescriptors.row(idx);
            const int dist = DescriptorDistance(dMP,dKF);
            if(distGetMapPoint(bestIdx);
            if(pMPinKF)// 如果这个点有对应的MapPoint
            {
                if(!pMPinKF->isBad())// 如果这个MapPoint不是bad,选择哪一个呢?哪个观测的多选哪一个
               {
                    if(pMPinKF->Observations()>pMP->Observations())
                        pMP->Replace(pMPinKF);
                    else
                        pMPinKF->Replace(pMP);
                }

            }
            else// 如果这个点没有对应的MapPoint,那么为该点添加MapPoint
            {
                pMP->AddObservation(pKF,bestIdx);
                pKF->AddMapPoint(pMP,bestIdx);
            }
            nFused++
        }
    }
    return nFused;
}

 

  •  Fuse(KeyFrame *pKF, cv::Mat Scw, const vector &vpPoints, float th, vector &vpReplacePoint)
函数功能 投影MapPoints到KeyFrame中,并判断是否有重复的MapPoints
参数说明  
pKF 相邻关键帧
Scw Scw为世界坐标系到pKF机体坐标系的Sim3变换,用于将世界坐标系下的vpPoints变换到机体坐标系
vpPoints  当前关键帧的MapPoints
th 搜索半径的因子
vpReplacePoint 记录下来需要被替换掉的pMPinKF
返回值 重复MapPoints的数量
  • SearchBySim3(KeyFrame *pKF1, KeyFrame *pKF2, vector &vpMatches12,const float &s12, const cv::Mat &R12, const cv::Mat &t12, const float th)
函数功能 通过Sim3变换,确定pKF1的特征点在pKF2中的大致区域,同理,确定pKF2的特征点在pKF1中的大致区域,在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12(之前使用SearchByBoW进行特征点匹配时会有漏匹配)
参数说明  
pKF1 关键帧1
pKF2 关键帧2
vpMatches12 存储匹配特征点对,特征点用其在关键帧中的索引表示
s12 尺度
R12 1到2的旋转矩阵
t12 1到2的平移
th 搜索半径的因子
返回值 重复MapPoints的数量
步骤

1.通过Sim变换,确定pKF1的特征点在pKF2中的大致区域,在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12(之前使用SearchByBoW进行特征点匹配时会有漏匹配)

2.通过Sim变换,确定pKF2的特征点在pKF1中的大致区域,在该区域内通过描述子进行匹配捕获pKF1和pKF2之前漏匹配的特征点,更新vpMatches12

3.

  • SearchByProjection(Frame &CurrentFrame, const Frame &LastFrame, const float th, const bool bMono)
函数功能 上一帧中包含了MapPoints,对这些MapPoints进行tracking,由此增加当前帧的MapPoints,
LastFrame 上一帧
th  阈值
bMono  是否为单目
返回值  成功匹配的数量
步骤

1. 将上一帧的MapPoints投影到当前帧(根据速度模型可以估计当前帧的Tcw)

2. 在投影点附近根据描述子距离选取匹配,以及最终的方向投票机制进行剔除

 

由于代码和上面函数基本类似,此处不再粘贴!

以上,结束。 

 

 

你可能感兴趣的:(ORB-SLAM,特征匹配,ORBmatcher.CC)