- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
线性代数是大学数学中非常核心的基础课程,教材繁多,国内外有许多经典的教材。国内比较有名且使用较为广泛的线性代数中文教材见书籍8。书籍8线性代数中文教材推荐:(a)简明线性代数(丘维声);(b)线性代数(居于马);(c)线性代数(李尚志);(d)线性代数(李炯生等);(e)线性代数五讲(龚昇);(f)线性代数的几何意义(任广千等)北京大学的丘维声教授编写的《简明线性代数》[17]是北京市高等教育精品
- 人工智能中的线性代数与矩阵论学习秘诀之学习路线
audyxiao001
人工智能怎么学线性代数人工智能矩阵
线性代数和矩阵论的学习对于打好AI的理论基础非常重要,要加以重视和认真学习。下面给出学习的路线仅供参考,个人可以根据自己的知识储备、数学能力以及研究方向加以调整。具体的学习路线见图3-8。在初级入门阶段,主要打好线性代数的理论基础,建议中文和英文教材各选一本进行学习,即从初级入门教材1~4和5~8中各选一本进行学习。在中级提高阶段,主要弄清楚线性代数理论的本质和物理含义,特别是线性代数的几何意义,
- Schur引理
patrickpdx
矩阵论矩阵
这是Schur引理的引理Schur引理的复矩阵版本和实矩阵版本摘自《矩阵论教程》第2版,张绍飞,p49
- 矩阵函数
patrickpdx
矩阵论
文章目录矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数通过Jordan标准形求矩阵函数待定系数法求矩阵函数矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大学出版社,2000.p158通过Jordan标准形求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大
- 矩阵分解——QR分解
patrickpdx
矩阵论
文章目录满秩方阵的QR分解矩阵QR分解例题列满秩矩阵的QR分解满秩方阵的QR分解可以看到,该证明过程是构造性的,即通过构造出了QQQ,RRR的方式,证明了QR分解的存在性,不仅证明了存在性,还为我们提供了QR分解中QQQ和RRR的求解方法矩阵QR分解例题摘自《矩阵论》程云鹏,西安交通大学,1999年6月第2版,p203列满秩矩阵的QR分解摘自《矩阵论教程》第二版张绍飞2.1节
- 【线性代数与矩阵论】矩阵的酉相似
你哥同学
线性代数与矩阵论线性代数矩阵
矩阵的酉相似(合同变换)2023年11月7日#algebra文章目录矩阵的酉相似(合同变换)1.酉矩阵2.酉相似3.Schur分解定理4.正规矩阵5.酉相似对角化6.Hermit矩阵,反Hermit矩阵及酉矩阵的特性7.Hermit矩阵的正定性下链1.酉矩阵设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,若A{A}A满足AHA=AAH=IA^\mathrmHA=AA^
- 深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
搬砖班班长
深度学习人工智能学习经验分享
经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。下面给出几个链接,可以用于平时充电学习。知乎上的:机器学习与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
- 【线性代数与矩阵论】范数理论
你哥同学
线性代数与矩阵论线性代数矩阵概率论范数
范数理论2023年11月16日文章目录范数理论1.向量的范数2.常用向量范数3.向量范数的等价性4.矩阵的范数5.常用的矩阵范数6.矩阵范数与向量范数的相容性7.矩阵范数诱导的向量范数8.由向量范数诱导的矩阵范数9.矩阵范数的酉不变性10.矩阵范数的等价性11.长方阵的范数下链1.向量的范数向量的长度也称为向量的二范数[!quote]-长度的定理设x,y,z∈Cn , λ∈C{x,y,z\in
- 【线性代数与矩阵论】矩阵的谱半径与条件数
你哥同学
线性代数与矩阵论线性代数矩阵概率论条件数
矩阵的谱半径与条件数2023年11月18日文章目录矩阵的谱半径与条件数1.矩阵的谱半径2.谱半径与范数的关系3.矩阵的条件数下链1.矩阵的谱半径定义设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,λ1,λ2,⋯ ,λn{\lambda_1,\lambda_2,\cdots,\lambda_n}λ1,λ2,⋯,λn是A的特征值,则称ρ(A)=max1≤i≤n∣λi∣\
- SVD分解原理及基于SVD分解的图像压缩和去噪
nwsuaf_huasir
信号处理
SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。SVD分解的公式如下,其中U和V都为正交矩阵,中间的为特征值构成的对角矩阵,相对于正交对角分解,SVD分解的适应性更强,应为A不必是方阵,下面是SVD分解的公式。用SVD做图像压
- 个人猜测:关于《矩阵论》中的QR分解为什么用Q来表示正交矩阵(orthogonal matrix )
SleepingBug
矩阵线性代数
为什么QR分解用Q来表示正交矩阵(orthogonalmatrix)?搜过Google,问过ChatGPT,什么说是约定俗成,什么说是历史原因,都没有一个合理的解释。都没有准确的答案,下面这两个链接还有人追溯最开始用QR写法的文章,但还是没有结论1)linearalgebra-Whyareorthogonalmatricessooftendenoted$Q$?-MathOverflow2)line
- 只不过孤岛罢了:我的2023年总结
染念
折腾心得年终总结人工智能深度学习性能优化c++
2023已悄然过去,还记得跨年夜那天,我突然接到一星期要期末考的消息,我的内心是多么奔溃,先不说一天一门强度如此之高,重要的是矩阵论,工程优化等等科目,还要速成,于是麻木得预习一日又一日,终于在10号结束了研一上的所有考试。剩下的就靠老师捞菜菜了。好了,吐槽的完了,现在正式地总结我的23年。文章目录身份上知识上比赛上思想上创作内容上感情上项目上数码产品上总结身份上这年惊喜的是1月份,我在蓝桥云课获
- 加密解密工具 之 希尔密码
一个工具箱
希尔密码(HillCipher),是运用基本矩阵论原理的替换密码,每个字母当作26进制数字:A=0,B=1,C=2...一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果mod26。用作加密的矩阵(即密匙)必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。简介希尔密码是运用基本矩阵论原理的替换密码,由LesterS.Hill在1929年发明。每个字母当作26进制数字
- 利用矩阵特征值解决微分方程【1】
唠嗑!
信息论安全矩阵网络安全
目录一.特征值介绍二.单变量常微分方程三.利用矩阵解决微分方程问题四.小结4.1矩阵论4.2特征值与特征向量内涵4.3应用一.特征值介绍线性代数有两大基础问题:如果A为对角阵的话,那么问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。在已知解的情况下,可以利用矩阵行列式解决问题。根据Cramer定则:将以下矩阵的行列式看成一个多项式:该多项式的根即为特征值。当矩阵维度较高时,这个方
- 《矩阵分析》笔记
热水过敏
矩阵笔记线性代数
来源:【《矩阵分析》期末速成主讲人:苑长(5小时冲上90+)】https://www.bilibili.com/video/BV1A24y1p76q?vd_source=c4e1c57e5b6ca4824f87e74170ffa64d这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没时间听太长的课,就看了b站上这个视频,笔记几乎就是原视频copy,和教材相比有一些没提到(如奇异值分解、House
- [矩阵论]哈尔滨工业大学全72讲
东北霸主劳德利
全科笔记矩阵python机器学习
主页有博主其他上万字精品笔记,例如数值分析,电磁学.01哈尔滨工业大学严质彬教授的矩阵分析课程,讲解了矩阵分析的基础知识和重要性。教材没有特别指定,建议购买北京理工大学的水荣昌的《矩阵分析》。课程假定学生已经学过高等数学中的线性代数,旨在为控制学科打下基础。讲授了线性空间和线性映射的概念,介绍了集合的笛卡尔积和映射的记号。00:00矩阵分析课程介绍:这个视频是关于矩阵分析课程的介绍。讲师强调了矩阵
- 【线性代数与矩阵论】Jordan型矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习线性控制系统Jordan型矩阵
Jordan型矩阵2023年11月3日#algebra文章目录Jordan型矩阵1.代数重数与几何重数2.Jordan块与Jordan标准型2.1最小多项式与Jordan标准型2.2两类重要矩阵3.矩阵的Jordan分解3.1Jordan分解的应用下链1.代数重数与几何重数在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被
- 实对称矩阵的特征值求法_正交矩阵学习小结
weixin_39548193
实对称矩阵的特征值求法已知协方差矩阵求特征值矩阵转置相关公式
整理一下矩阵论学习中的相关概念。从正交矩阵开始正交矩阵定义1称n阶方阵A是正交矩阵,若正交矩阵有几个重要性质:A的逆等于A的转置,即A的行列式为±1,即A的行(列)向量组为n维单位正交向量组上述3个性质可以看做是正交矩阵的判定准则,我们可以通过上述准则简单地判断一个矩阵是否是正交矩阵。下面,我们将从线性变换的角度,来看正交矩阵还有哪些独特的性质。首先给出正交变换的定义:定义2欧氏空间V的线性变换T
- 机器学习算法工程师
prolrj2015
算法
职位要求1、扎实的数学功底和分析技能,精通计算机视觉中的数学方法;高等数学(微积分)、线性代数(矩阵论)、随机过程、概率论、摄影几何、模型估计、数理统计、张量代数、数据挖掘、数值分析等;2、具备模式识别、图像处理、机器视觉、信号处理和人工智能等基础知识;对图像特征、机器学习有深刻认识与理解;3、精通图像处理基本概念和常用算法包括图像预处理算法和高级处理算法;常见的图像处理算法,包括增强、分割、复原
- 【矩阵论】Chapter 4—特征值和特征向量知识点总结复习
unique_pursuit
课程矩阵线性代数
文章目录1特征值和特征向量2对角化3Schur定理和正规矩阵1特征值和特征向量定义设σ\sigmaσ为数域FFF上线性空间VVV上的一个线性变换,一个非零向量v∈Vv\inVv∈V,如果存在一个λ∈F\lambda\inFλ∈F使得σ(v)=λv\sigma(v)=\lambdavσ(v)=λv,则λ\lambdaλ称为σ\sigmaσ的特征值。σ\sigmaσ的特征值的集合称为σ\sigmaσ的
- 【矩阵论】Chapter 2—内积空间知识点总结复习
unique_pursuit
课程矩阵线性代数机器学习
文章目录内积空间1内积空间2标准正交向量集3Gram-Schmidt正交化方法4正交子空间5最小二乘问题6正交矩阵和酉矩阵内积空间1内积空间内积空间定义设VVV是在数域FFF上的向量空间,则VVV到FFF的一个代数运算记为(α,β)(\alpha,\beta)(α,β)。如果(α,β)(\alpha,\beta)(α,β)满足以下条件:(α,β)=(β,α)‾(\alpha,\beta)=\ove
- 雷达算法相关技术栈
奔袭的算法工程师
算法
作为一名雷达算法工程师,总结一下相关的技术栈。一、数学基础信号与系统、数字信号处理、概率论与数理统计、随机信号分析、随机过程、矩阵论二、雷达算法1.雷达基本原理(测距、测速、测角)2.波形设计对雷达测量的影响3.距离模糊、速度模糊、角度模糊产生的原因和解决办法4.调频连续波的测距、测速、测角原理(多维FFT累加)5.波束形成和滤波器设计,以及对于波束的影响6.检测门限、概率与奈-皮尔逊准则7.不同
- 《矩阵论》学习笔记(一):第一章 线性空间与线性变换
熊宝宝爱学习
数学线性代数矩阵
《矩阵论》学习笔记:第一章线性空间与线性变换文章目录《矩阵论》学习笔记:第一章线性空间与线性变换一、线性空间1.1线性空间1.2线性变换及其矩阵1.2.1线性变换及其应用1.2.2线性变换的矩阵表示1.2.3特征值和特征向量1.2.4对角矩阵1.2.6jordan标准型1.3两个特殊的线性空间1.3.1欧氏空间1.3.2酉空间二、线性变换及其性质第一章线性空间与线性变换一.线性空间二.线性变换及其
- 《矩阵理论》笔记 1 — 线性空间与线性变换
frozendure
矩阵理论矩阵线性代数学习
矩阵论-线性空间与线性变换文章目录矩阵论-线性空间与线性变换一、线性空间1、线性空间1.1向量空间1.2线性空间1.3线性空间典型例子2、线性空间的基和维数2.1线性组合2.2线性相关与线性无关2.3基和维数2.4坐标3.基变换和坐标变换4.线性空间的同构4.1等价关系4.2性质二、线性子空间1、线性子空间2、维数公式3、子空间的直和三、线性变换1、映射2、线性变换3、线性变换的运算3.1线性变换
- 【矩阵论】矩阵的相似标准型(3)
kodoshinichi
数学#矩阵论线性代数矩阵论对角化线性变换
矩阵的相似标准型之“可对角化的条件”本节主要围绕着矩阵(或线性变换)能否进行对角化以及如何进行对角化进行讨论。【对角化的判断】矩阵的对角化:对给定的矩阵,判断能否相似于对角阵线性变换的对角化:对给定的线性空间上的线性变换,判断是否存在空间的一组基,使得其矩阵是对角阵。前面有关线性变换、线性空间和矩阵讨论了那么多,我们已经可以在矩阵和线性变换之间建立一个对应关系了,因此矩阵的对角化问题和相似变换的对
- 人工智能中的线性代数与矩阵论学习秘诀之知识体系
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
很多人学完线性代数、矩阵论两门课程后,完全不知道自己学了些什么,也不知道学这两门课程有什么用,心中满是疑惑。首先线性代数和矩阵论属于代数学范畴,既然如此,让我们先回忆一下从小学到高中是如何学习代数的。以实数为例,先了解什么是实数,然后学习实数的基本运算,接下来将多个实数打包在一起构成集合并研究不同集合的性质和变换。现在将实数换成向量,按照类似的步骤走一遍这个流程,我们将得到:“先了解什么是向量,然
- 【线性代数与矩阵论】坐标变换与相似矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习
坐标变换与相似矩阵2023年11月4日#algebra文章目录坐标变换与相似矩阵1.基变换与坐标变换2.相似变换下链1.基变换与坐标变换坐标变换与基变换都要通过过渡矩阵AAA来实现。设有一向量f⃗\vecff,xxx是在基α\alphaα下该向量的坐标,yyy是在新基β\betaβ下该向量的坐标,则基变换为:β=αA , A=α−1β\beta=\alphaA\,\,,\,\,A=\alpha
- 矩阵论(零):线性代数基础知识整理(2)——矩阵的秩与向量组的秩
exp(i)
机器学习的数学基础线性代数矩阵论机器学习
矩阵论专栏:专栏(文章按照顺序排序)本篇博客承接上篇矩阵论(零):线性代数基础知识整理(1)——逆矩阵、初等变换、满秩分解,主要整理秩相关的结论。线性方程组的解与向量组的秩线性方程组的解(初步讨论)向量组的秩线性方程组的解(进一步讨论)零矩阵的判定定理关于秩的重要结论(结合向量组的秩、分块矩阵的秩的方法进行总结)矩阵的秩与向量组的秩的关系常用矩阵秩相关的等式和不等式公式1:∣r(A)−r(B)∣⩽
- 矩阵论(零):线性代数基础知识整理(5)——特征值与相似
exp(i)
机器学习的数学基础线性代数矩阵
矩阵论专栏:专栏(文章按照顺序排序)本篇博客的上篇是矩阵论(零):线性代数基础知识整理(4)——线性空间与线性变换,梳理了线性空间与线性变换的相关内容。本文主要整理矩阵的特征值与相似的相关内容。方阵的特征值特征值的定义及性质特殊矩阵的特征值与特征向量(对角矩阵、上(下)三角矩阵、酋矩阵、分块矩阵)AAA、ATA^TAT、AHA^HAH的特征值的关系AHAA^HAAHA和AAHAA^HAAH的特征值
- [矩阵论] Unit 6. 矩阵的 Kronecker 积与 Hadamard 积 - 知识点整理
PeakCrosser
矩阵论矩阵线性代数
注:以下内容均由个人整理,不保证完全准确,如有纰漏,欢迎交流讨论参考:杨明,刘先忠.矩阵论(第二版)[M].武汉:华中科技大学出版社,20056矩阵的Kronecker积与Hadamard积6.1Kronecker积与Hadamard积的定义K-积和H-积定义K-积:Am×n⊗Bs×t=[aijB]ms×nt=[a11B⋯a1nBa21B⋯a2nB⋯⋯⋯am1B⋯amnB]A_{m\timesn}
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc