bzoj1101(莫比乌斯反演)

Description
  FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a
,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input
  第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个
正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output
  对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input
2
4 5 2
6 4 3
Sample Output
3
2


莫比乌斯模板题
xi=1yj=1[gcd(i,j)==d] ∑ i = 1 x ∑ j = 1 y [ g c d ( i , j ) == d ]
=xdi=1ydj=1[gcd(i,j)==1] = ∑ i = 1 ⌊ x d ⌋ ∑ j = 1 ⌊ y d ⌋ [ g c d ( i , j ) == 1 ]
=xdi=1ydj=1p|gcd(i,j)μ(p) = ∑ i = 1 ⌊ x d ⌋ ∑ j = 1 ⌊ y d ⌋ ∑ p | g c d ( i , j ) μ ( p )
=min(xd,yd)p=1μ(d)xpdypd = ∑ p = 1 m i n ( ⌊ x d ⌋ , ⌊ y d ⌋ ) μ ( d ) ⌊ x p d ⌋ ⌊ y p d ⌋

#include
using namespace std;
const int maxn = 50100;
int prime[maxn] , miu[maxn];
bool flag[maxn];  

int read()
{
    int sum = 0;char c = getchar();bool flag = true;
    while( c < '0' || c > '9' ) {if(c == '-') flag = false;c = getchar();}
    while( c >= '0' && c <= '9' ) sum = sum * 10 + c - 48 , c = getchar();
    if(flag)  return sum;
     else return -sum;
}  

void first(){
    miu[1] = 1;
    for(int i = 2;i <= maxn;++i)
    {
        if(!flag[i])
            prime[++prime[0]] = i , miu[i] = -1;
        for(int j = 1;j <= prime[0] && i * prime[j] <= maxn;++j) 
        {
            flag[i * prime[j]] = true;
            if(i % prime[j] == 0) break;
            miu[i * prime[j]] = -miu[i];
        }
    }
    for(int i = 1;i <= maxn;++i)
        miu[i] += miu[i - 1];
    return;
}

long long solve(int x,int y,int p){
    long long ans = 0;
    if( x > y ) swap(x,y);
    x /= p;y /= p;
    int d = 1;
    int Max = min( x , y );
    while( d <= Max )
    {
        int i = min( x / ( x / d ) , y / ( y / d ));
        ans = ans + 1ll * (miu[i] - miu[d - 1]) * (x/d) * (y/d);\
        d = i + 1;
    }
    return ans;
}

void init(){
    int T = read();
    while(T--)
    {
        int a = read() , b = read() , d = read();
        printf("%lld\n",solve(a,b,d));
    }
    return;
}

int main(){
    first();    
    init();
    return 0;
}  

你可能感兴趣的:(莫比乌斯反演)