[数学]三角函数与双曲函数及其导数和不定积分

三角函数与双曲函数及其导数和不定积分

定义

sin ⁡ x = e i x − e − i x 2 i cos ⁡ x = e i x + e − i x 2 tan ⁡ x = e i x − e − i x ( e i x + e − i x ) i arcsin ⁡ x = − i ln ⁡ ( 1 − x 2 + i x ) arccos ⁡ x = − i ln ⁡ ( x 2 − 1 + x ) arctan ⁡ x = − i 2 ln ⁡ ( 1 + i x 1 − i x ) sh ⁡ x = e x − e − x 2 ch ⁡ x = e x + e − x 2 th ⁡ x = e x − e − x e x + e − x arsh  x = ln ⁡ ( x 2 + 1 + x ) arch  x = ln ⁡ ( x 2 − 1 + x ) arth  x = 1 2 ln ⁡ ( 1 + x 1 − x ) \begin{aligned} \sin x &= \frac{e^{ix}-e^{-ix}}{2i} \\ \cos x &= \frac{e^{ix}+e^{-ix}}{2} \\ \tan x &= \frac{e^{ix}-e^{-ix}}{(e^{ix}+e^{-ix})i} \\ \arcsin x &= -i\ln(\sqrt{1-x^2} + ix) \\ \arccos x &= -i\ln(\sqrt{x^2-1} + x) \\ \arctan x &= -\frac i2\ln(\frac{1+ix}{1-ix}) \\ \sh x &= \frac{e^x-e^{-x}}{2} \\ \ch x &= \frac{e^x+e^{-x}}{2} \\ \th x &= \frac{e^x-e^{-x}}{e^x+e^{-x}} \\ \text{arsh }x &= \ln(\sqrt{x^2+1}+x) \\ \text{arch }x &= \ln(\sqrt{x^2-1}+x) \\ \text{arth }x &= \frac 12\ln(\frac{1+x}{1-x}) \end{aligned} sinxcosxtanxarcsinxarccosxarctanxshxchxthxarsh xarch xarth x=2ieixeix=2eix+eix=(eix+eix)ieixeix=iln(1x2 +ix)=iln(x21 +x)=2iln(1ix1+ix)=2exex=2ex+ex=ex+exexex=ln(x2+1 +x)=ln(x21 +x)=21ln(1x1+x)

关系

sin ⁡ i x = i sh ⁡ x sh ⁡ i x = i sin ⁡ x cos ⁡ i x = ch ⁡ x ch ⁡ i x = cos ⁡ x tan ⁡ i x = i th ⁡ x th ⁡ i x = i tan ⁡ x arcsin ⁡ i x = i  arsh  x arsh  i x = i arcsin ⁡ x arccos ⁡ i x = − i  arch  i x arch  i x = i arccos ⁡ i x arctan ⁡ i x = i  arth  x arth  i x = i arctan ⁡ x \begin{aligned} \sin ix &= i\sh x \\ \sh ix &= i\sin x \\ \cos ix &= \ch x \\ \ch ix &= \cos x \\ \tan ix &= i\th x \\ \th ix &= i\tan x \\ \arcsin ix &= i \text{ arsh } x \\ \text{arsh } ix &= i\arcsin x \\ \arccos ix &= -i \text{ arch }ix \\ \text{arch } ix &= i \arccos ix \\ \arctan ix &= i\text{ arth } x \\ \text{arth } ix &= i\arctan x \end{aligned} sinixshixcosixchixtanixthixarcsinixarsh ixarccosixarch ixarctanixarth ix=ishx=isinx=chx=cosx=ithx=itanx=i arsh x=iarcsinx=i arch ix=iarccosix=i arth x=iarctanx

导数

( sin ⁡ x ) ′ = cos ⁡ x ( cos ⁡ x ) ′ = − sin ⁡ x ( tan ⁡ x ) ′ = 1 cos ⁡ 2 x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( sh ⁡ x ) ′ = ch ⁡ x ( ch ⁡ x ) ′ = sh ⁡ x ( th ⁡ x ) ′ = 1 ch ⁡ 2 x ( arsh  x ) ′ = 1 x 2 + 1 ( arch  x ) ′ = 1 x 2 − 1 ( arth  x ) ′ = 1 1 − x 2 \begin{aligned} \left(\sin x\right)' &= \cos x \\ \left(\cos x\right)' &= -\sin x \\ \left(\tan x\right)' &= \frac{1}{\cos^2 x} \\ \left(\arcsin x\right)' &= \frac{1}{\sqrt{1-x^2}} \\ \left(\arccos x\right)' &= -\frac{1}{\sqrt{1-x^2}} \\ \left(\arctan x\right)' &= \frac{1}{1+x^2} \\ \left(\sh x\right)' &= \ch x \\ \left(\ch x\right)' &= \sh x \\ \left(\th x\right)' &= \frac{1}{\ch^2 x} \\ \left(\text{arsh } x\right)' &= \frac{1}{\sqrt{x^2+1}} \\ \left(\text{arch } x\right)' &= \frac{1}{\sqrt{x^2-1}} \\ \left(\text{arth } x\right)' &= \frac{1}{1-x^2} \\ \end{aligned} (sinx)(cosx)(tanx)(arcsinx)(arccosx)(arctanx)(shx)(chx)(thx)(arsh x)(arch x)(arth x)=cosx=sinx=cos2x1=1x2 1=1x2 1=1+x21=chx=shx=ch2x1=x2+1 1=x21 1=1x21

不定积分

∫ sin ⁡ x d x = − cos ⁡ x + C ∫ cos ⁡ x d x = sin ⁡ x + C ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ∫ sh ⁡ x d x = ch ⁡ x + C ∫ ch ⁡ x d x = sh ⁡ x + C ∫ th ⁡ x d x = ln ⁡ ∣ ch ⁡ x ∣ + C \begin{aligned} \int{\sin x\text{d}x} &= -\cos x+C \\ \int{\cos x\text{d}x} &= \sin x+C \\ \int{\tan x\text{d}x} &= -\ln\left|\cos x\right|+C \\ \int{\sh x\text{d}x} &= \ch x+C \\ \int{\ch x\text{d}x} &= \sh x+C \\ \int{\th x\text{d}x} &= \ln\left|\ch x\right|+C \\ \end{aligned} sinxdxcosxdxtanxdxshxdxchxdxthxdx=cosx+C=sinx+C=lncosx+C=chx+C=shx+C=lnchx+C


注: arch  x \text{arch } x arch x 完整解析式为 ± ln ⁡ ( x 2 − 1 + 1 ) \pm\ln(\sqrt{x^2-1}+1) ±ln(x21 +1), 且 arccos ⁡ x = ± i  arch  x \arccos x = \pm i\text{ arch }x arccosx=±i arch x.

你可能感兴趣的:(几何学)