无论是什么导数, 其本质都是求切线斜率, 都是一个 Δ f Δ x \dfrac{\Delta f}{\Delta x} ΔxΔf 的极限结果. 只不过在不同情境下有不同的名称而已. 而微分无非是变量间的瞬时变化关系罢了.
导数是微分的基础计算工具, 微分是运算和分析工具, 同时为积分提供积分微元指导.
考虑一元函数 y = f ( x ) y=f(x) y=f(x), 则对函数的运算
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x)=\lim_{\Delta x\to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} f′(x)=Δx→0limΔxf(x+Δx)−f(x)
的结果 f ′ ( x ) f'(x) f′(x) 称为 f ( x ) f(x) f(x) 在 x x x 处的导数.
进一步地, f ′ ( x ) f'(x) f′(x) 的导数记为 f ′ ′ ( x ) f''(x) f′′(x), f ′ ′ ( x ) f''(x) f′′(x) 的导数记为 f ′ ′ ′ ( x ) f'''(x) f′′′(x).
依次称 f ′ ′ ( x ) f''(x) f′′(x), f ′ ′ ′ ( x ) f'''(x) f′′′(x) 为 f ( x ) f(x) f(x) 的二阶导数, 三阶导数.
f ( x ) f(x) f(x) 的N阶导数记为 f ( n ) ( x ) f^{(n)}(x) f(n)(x). 并规定 f ( 0 ) ( x ) = f ( x ) f^{(0)}(x)=f(x) f(0)(x)=f(x).
考虑二元函数, z = f ( x , y ) z=f(x,y) z=f(x,y), 则对函数的双侧极限
f x ′ ( x , y 0 ) = lim Δ x → 0 f ( x + Δ x , y 0 ) − f ( x , y 0 ) Δ x f y ′ ( x 0 , y ) = lim Δ y → 0 f ( x 0 , y + Δ y ) − f ( x 0 , y ) Δ y f'_x(x,y_0)=\lim_{\Delta x\to 0} \frac{f(x+\Delta x,y_0)-f(x,y_0)}{\Delta x} \\ f'_y(x_0,y)=\lim_{\Delta y\to 0} \frac{f(x_0,y+\Delta y)-f(x_0,y)}{\Delta y} fx′(x,y0)=Δx→0limΔxf(x+Δx,y0)−f(x,y0)fy′(x0,y)=Δy→0limΔyf(x0,y+Δy)−f(x0,y)
的结果 f x ′ ( x , y 0 ) f'_x(x,y_0) fx′(x,y0) 和 f y ′ ( x 0 , y ) f'_y(x_0,y) fy′(x0,y) 分别称为 f ( x , y ) f(x,y) f(x,y) 在 ( x , y 0 ) (x,y_0) (x,y0) 处在 y = y 0 y=y_0 y=y0 方向上的偏导数和在 ( x 0 , y ) (x_0,y) (x0,y) 处在 x = x 0 x=x_0 x=x0 方向上的偏导数. 偏导数又有其他记号, 如下
f x ′ ( x , y ) = ∂ f ( x , y ) ∂ x = f 1 ′ = ∂ 1 f f y ′ ( x , y ) = ∂ f ( x , y ) ∂ y = f 2 ′ = ∂ 2 f f'_x(x,y)=\frac{\partial f(x,y)}{\partial x}=f'_1=\partial_1f \\ f'_y(x,y)=\frac{\partial f(x,y)}{\partial y}=f'_2=\partial_2f fx′(x,y)=∂x∂f(x,y)=f1′=∂1ffy′(x,y)=∂y∂f(x,y)=f2′=∂2f
在一些情况下, 为了书面简洁, 函数后面的 ( x , y ) (x,y) (x,y) 可以省略. 虽然导数的表记符号相当多, 但都是指同一个东西.
类似地, 可以将偏导数推广到一般的多元函数上. 对具有 n n n 个参数的多元函数的对第 i i i 个参数的偏导数为
f i ′ ( x 1 , ⋯ , x i , ⋯ , x n ) = lim Δ x i → x i f ( x 1 , ⋯ , x i + Δ x i , ⋯ , x n ) − f ( x 1 , ⋯ , x i , ⋯ , x n ) Δ x i = ∂ f ∂ x i = f i ′ = ∂ i f \begin{aligned} &f'_i(x_1,\cdots,x_i,\cdots,x_n) \\ =& \lim_{\Delta x_i\to x_i} \frac{f(x_1,\cdots,x_i+\Delta x_i,\cdots,x_n)-f(x_1,\cdots,x_i,\cdots,x_n)}{\Delta x_i} \\ =&\frac{\partial f}{\partial x_i} = f'_i = \partial_i f \end{aligned} ==fi′(x1,⋯,xi,⋯,xn)Δxi→xilimΔxif(x1,⋯,xi+Δxi,⋯,xn)−f(x1,⋯,xi,⋯,xn)∂xi∂f=fi′=∂if
f f f 先对第一个参数求偏导数, 然后对第二个参数求偏导数, 结果记作 ∂ 2 f ( x , y ) ∂ x ∂ y \dfrac{\partial^2 f(x,y)}{\partial x \partial y} ∂x∂y∂2f(x,y) 或 f 12 ′ ′ f''_{12} f12′′ 或 ∂ 1 ∂ 2 f \partial_1\partial_2f ∂1∂2f, 反之, 先对第二个参数求偏导数, 然后对第一个参数求偏导数, 结果记作 ∂ 2 f ( x , y ) ∂ y ∂ x \dfrac{\partial^2 f(x,y)}{\partial y \partial x} ∂y∂x∂2f(x,y) 或 f 21 ′ ′ f''_{21} f21′′ 或 ∂ 2 ∂ 1 f \partial_2\partial_1f ∂2∂1f.
一般情况下函数若足够光滑, 则有 ∂ 2 f ∂ x ∂ y = ∂ 2 f ∂ y ∂ x \dfrac{\partial^2 f}{\partial x\partial y}=\dfrac{\partial^2 f}{\partial y\partial x} ∂x∂y∂2f=∂y∂x∂2f, 即多阶导数结果与求导顺序无关.
二元函数在 ( x , y ) (x,y) (x,y) 处在方向 l ⃗ = ( cos θ , sin θ ) \vec{l}=(\cos \theta, \sin\theta) l=(cosθ,sinθ) 上的导数, 亦或称为方向导数定义为单侧极限
f l ′ ( x , y ) = ∂ f ∂ l ⃗ = lim Δ r → 0 + f ( x + Δ r cos θ , y + Δ r sin θ ) − f ( x , y ) Δ r f'_l(x,y)=\frac{\partial f}{\partial \vec{l}}=\lim_{\Delta r\to0^+ }{\frac{f(x+\Delta r\cos\theta, y+\Delta r\sin\theta)-f(x,y)}{\Delta r}} fl′(x,y)=∂l∂f=Δr→0+limΔrf(x+Δrcosθ,y+Δrsinθ)−f(x,y)
特别地, 若在x轴和y轴方向的偏导数存在, 则当 θ = 0 \theta=0 θ=0 时, ∂ f ∂ l ⃗ = ∂ f ∂ x \dfrac{\partial f}{\partial \vec{l}}=\dfrac{\partial f}{\partial x} ∂l∂f=∂x∂f, 当 θ = π 2 \theta = \dfrac{\pi}{2} θ=2π 时, ∂ f ∂ l ⃗ = ∂ f ∂ y \dfrac{\partial f}{\partial \vec{l}}=\dfrac{\partial f}{\partial y} ∂l∂f=∂y∂f.
连续映射 f f f 在值 x x x 的邻域内若可展开为线性映射和高阶无穷小映射 r r r, 则称映射在 x x x 可微, 这一现象表记为
f ( x + d x ) = f ( x ) + f ′ ( x ) d x + r ( d x ) f(x+\text dx)=f(x) + f'(x)\text dx + r(\text dx) f(x+dx)=f(x)+f′(x)dx+r(dx)
其中高阶无穷小映射 r r r 满足
lim ∣ d x ∣ → 0 r ( d x ) ∣ d x ∣ = 0 \lim_{|\text dx|\to 0}\dfrac{r(\text dx)}{|\text dx|}=0 ∣dx∣→0lim∣dx∣r(dx)=0
取线性映射中可变部分作为映射在 x x x 处的微分, 记作
d f ( x ) = f ′ ( x ) d x \text df(x)=f'(x)\text dx df(x)=f′(x)dx
考虑一元函数构成的曲线 y = f ( x ) y=f(x) y=f(x), 在 ( x , y ) (x,y) (x,y) 处, 当 x x x 发生 d x \text{d} x dx 的任意小的微量变化时, 若 y y y 亦以一固定比例发生 d y \text{d}y dy 的线性变化, 则称曲线或函数在 ( x , y ) (x,y) (x,y) 可微.
令 d x = Δ x \text{d}x=Δx dx=Δx ,可以看到 d y \text{d}y dy 和 Δ y \Delta y Δy 的大小关系如下
显然有
d y = f ′ ( x ) d x \text{d}y=f'(x)\text{d}x dy=f′(x)dx
反之有
f ′ ( x ) = d y d x f'(x)=\frac{\text{d}y}{\text{d}x} f′(x)=dxdy
考虑二元函数构成的曲面 z = f ( x , y ) z=f(x,y) z=f(x,y), 在 ( x , y , z ) (x,y,z) (x,y,z)处, 当所有参数都各自发生互不相关的 d x \text{d}x dx 和 d y \text{d}y dy 的任意小的微量变化时, 若 z z z 亦以一固定比例发生 d z \text{d}z dz 的线性变化, 则称曲面或函数在 ( x , y , z ) (x,y,z) (x,y,z) 可微.
以 ( x , y , z ) (x,y,z) (x,y,z), ( x + d x , y + d y , z + d z ) (x+\text{d}x, y+\text{d}y, z+\text{d}z) (x+dx,y+dy,z+dz) 为对角顶点建立微分立方体.
显然有
d z = ∂ z ∂ x d x + ∂ z ∂ y d y = f 1 ′ ( x , y ) d x + f 2 ′ ( x , y ) d y \text{d}z=\frac{\partial z}{\partial x}\text{d}x+\frac{\partial z}{\partial y}\text{d}y=f'_1(x,y)\text{d}x+f'_2(x,y)\text{d}y dz=∂x∂zdx+∂y∂zdy=f1′(x,y)dx+f2′(x,y)dy
类似地, 多元函数 y = f ( x 1 , x 2 , ⋯ , x n ) y=f(x_1,x_2,\cdots,x_n) y=f(x1,x2,⋯,xn) 若可微, 则其微分为
d y = ∑ i = 1 n ∂ y ∂ x i d x i \text{d}y=\sum_{i=1}^n \frac{\partial y}{\partial x_i}\text{d}x_i dy=i=1∑n∂xi∂ydxi
考虑对关于 x x x 和 y y y 的微分方程 F ( x , y , d x , d y ) = 0 F(x,y,\text dx,\text dy)=0 F(x,y,dx,dy)=0 进行如下换元
{ x = f ( u , v ) y = g ( u , v ) \begin{cases} x=f(u,v) \\ y=g(u,v) \end{cases} { x=f(u,v)y=g(u,v)
求微分得到
{ d x = f 1 ′ d u + f 2 ′ d v d y = g 1 ′ d u + g 2 ′ d v \begin{cases} \text dx=f'_1\text du+f'_2\text dv \\ \text dy=g'_1\text du+g'_2\text dv \\ \end{cases} { dx=f1′du+f2′dvdy=g1′du+g2′dv
代入方程完成换元
F ( x , y , d x , d y ) = F ( f ( u , v ) , g ( u , v ) , f 1 ′ d u + f 2 ′ d v , g 1 ′ d u + g 2 ′ d v ) = G ( u , v , d u , d v ) = 0 F(x,y,\text dx,\text dy) = F(f(u,v), g(u,v), f'_1\text du+f'_2\text dv,g'_1\text du+g'_2\text dv) = G(u,v,\text du, \text dv) = 0 F(x,y,dx,dy)=F(f(u,v),g(u,v),f1′du+f2′dv,g1′du+g2′dv)=G(u,v,du,dv)=0
一般地, 向量函数 y ⃗ = f ⃗ ( x ⃗ ) \vec{y}=\vec{f}(\vec{x}) y=f(x) 总可等价拆写为如下向量
x ⃗ = ( x 1 x 2 ⋮ x n ) , y ⃗ = ( y 1 y 2 ⋮ y k ) , f ⃗ ( x ⃗ ) = ( f 1 ( x ⃗ ) f 2 ( x ⃗ ) ⋮ f k ( x ⃗ ) ) = ( f 1 ( x 1 , x 2 , ⋯ , x n ) f 2 ( x 1 , x 2 , ⋯ , x n ) ⋮ f k ( x 1 , x 2 , ⋯ , x n ) ) \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{pmatrix}, \vec{f}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_k(\vec{x}) \\ \end{pmatrix} = \begin{pmatrix} f_1(x_1, x_2, \cdots, x_n) \\ f_2(x_1, x_2, \cdots, x_n) \\ \vdots \\ f_k(x_1, x_2, \cdots, x_n) \\ \end{pmatrix} x=⎝⎜⎜⎜⎛x1x2⋮xn⎠⎟⎟⎟⎞,y=⎝⎜⎜⎜⎛y1y2⋮yk⎠⎟⎟⎟⎞,f(x)=⎝⎜⎜⎜⎛f1(x)f2(x)⋮fk(x)⎠⎟⎟⎟⎞=⎝⎜⎜⎜⎛f1(x1,x2,⋯,xn)f2(x1,x2,⋯,xn)⋮fk(x1,x2,⋯,xn)⎠⎟⎟⎟⎞
定义 d ( x 1 x 2 ⋮ x n ) = ( d x 1 d x 2 ⋮ d x n ) \text d \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \text dx_1 \\ \text dx_2 \\ \vdots \\ \text dx_n \end{pmatrix} d⎝⎜⎜⎜⎛x1x2⋮xn⎠⎟⎟⎟⎞=⎝⎜⎜⎜⎛dx1dx2⋮dxn⎠⎟⎟⎟⎞.
若函数可微, 则函数在 x ⃗ \vec{x} x 的领域内可展开为
f ⃗ ( x ⃗ + d x ⃗ ) = f ⃗ ( x ⃗ ) + f ⃗ ′ ( x ⃗ ) d x ⃗ + r ⃗ ( d x ⃗ ) \vec{f}(\vec{x}+\text d{\vec{x}})=\vec{f}(\vec{x})+\vec{f}'(\vec{x})\text d\vec{x}+\vec{r}(\text d\vec{x}) f(x+dx)=f(x)+f′(x)dx+r(dx)
由此得到向量函数的微分的概念
d y ⃗ = d f ⃗ ( x ⃗ ) = f ⃗ ′ ( x ⃗ ) d x ⃗ \text d\vec{y}=\text d\vec{f}(\vec{x})=\vec{f}'(\vec{x})\text d\vec{x} dy=df(x)=f′(x)dx
其中 f ⃗ ′ ( x ⃗ ) \vec{f}'(\vec{x}) f′(x) 为雅可比矩阵
( ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋮ ∂ f k ∂ x 1 ∂ f k ∂ x 2 ⋯ ∂ f k ∂ x n ) \begin{pmatrix} \cfrac{\partial f_1}{\partial x_1} & \cfrac{\partial f_1}{\partial x_2} & \cdots & \cfrac{\partial f_1}{\partial x_n} \\ \cfrac{\partial f_2}{\partial x_1} & \cfrac{\partial f_2}{\partial x_2} & \cdots & \cfrac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \cfrac{\partial f_k}{\partial x_1} & \cfrac{\partial f_k}{\partial x_2} & \cdots & \cfrac{\partial f_k}{\partial x_n} \\ \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛∂x1∂f1∂x1∂f2⋮∂x1∂fk∂x2∂f1∂x2∂f2⋮∂x2∂fk⋯⋯⋯∂xn∂f1∂xn∂f2⋮∂xn∂fk⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
若函数 f ( x ) f(x) f(x) 在区间 D D D 内任意 x 0 x_0 x0 和 x 1 x_1 x1 ( x 0 < x 1 ) (x_0
若 f ( x ) f(x) f(x) 在区间 D D D 内单调递增(或单调递减), 有
f ( x 1 ) − f ( x 0 ) x 1 − x 0 > 0 ( f ( x 1 ) − f ( x 0 ) x 1 − x 0 < 0 ) \frac{f(x_1)-f(x_0)}{x_1-x_0}>0 \left(\frac{f(x_1)-f(x_0)}{x_1-x_0}<0\right) x1−x0f(x1)−f(x0)>0(x1−x0f(x1)−f(x0)<0)
则在该区间内的导数
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x ≥ 0 ( f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x ≤ 0 ) f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\ge0 \left(f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\le0\right) f′(x)=Δx→0limΔxf(x+Δx)−f(x)≥0(f′(x)=Δx→0limΔxf(x+Δx)−f(x)≤0)
介值定理
函数 f ( x ) f(x) f(x) 在区间 D = [ a , b ] D=[a,b] D=[a,b] 上连续.
则 ∃ ξ ∈ D , f ( ξ ) = A \exist \xi \in D, f(\xi)=A ∃ξ∈D,f(ξ)=A, 其中 min { f ( x ) } ≤ A ≤ max { f ( x ) } \min\{f(x)\}\le A \le \max\{f(x)\} min{ f(x)}≤A≤max{ f(x)}.
费马引理
函数 f ( x ) f(x) f(x) 在邻域 U ( x 0 ) U(x_0) U(x0) 内有 f ( x ) ≤ A f(x)\le A f(x)≤A
在 x 0 x_0 x0 处可导
且 f ( x 0 ) = A f(x_0)=A f(x0)=A
则有 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0.
罗尔中值定理
函数 f ( x ) f(x) f(x) 在区间 D = [ a , b ] D=[a,b] D=[a,b] 上连续
在开区间 ( a , b ) (a,b) (a,b) 可导
且 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
则 ∃ ξ ∈ D , f ′ ( ξ ) = 0 \exist \xi \in D, f'(\xi)=0 ∃ξ∈D,f′(ξ)=0.
拉格朗日中值定理
函数 f ( x ) f(x) f(x) 在区间 D = [ a , b ] D=[a,b] D=[a,b] 上连续
在开区间 ( a , b ) (a,b) (a,b) 可导
则 ∃ ξ ∈ D , f ′ ( ξ ) = f ( b ) − f ( a ) b − a \exist \xi \in D, f'(\xi)=\dfrac{f(b)-f(a)}{b-a} ∃ξ∈D,f′(ξ)=b−af(b)−f(a).
柯西中值定理
函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 在区间 D = [ a , b ] D=[a,b] D=[a,b] 上连续
在开区间 ( a , b ) (a,b) (a,b) 可导
且 g ′ ( x ) ≠ 0 g'(x)\ne 0 g′(x)=0
则 ∃ ξ ∈ D , f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \exist \xi \in D, \dfrac{f'(\xi)}{g'(\xi)}=\dfrac{f(b)-f(a)}{g(b)-g(a)} ∃ξ∈D,g′(ξ)f′(ξ)=g(b)−g(a)f(b)−f(a).
曲线曲面等几何体可由函数, 隐函数, 参数方程等确定. 尽管函数, 隐函数, 参数方程等的导数, 偏导数各式各样, 但曲线曲面等集合体的微分形式唯一. 理清各式函数方程的导数偏导数之间的关系, 重点是回归到形式唯一的几何微分.
设参数方程 { y = y ( t ) x = x ( t ) \begin{cases} y=y(t) \\ x=x(t) \end{cases} { y=y(t)x=x(t) 确定一段曲线 y = f ( x ) y=f(x) y=f(x), 求微分得到
{ d y = y ′ ( t ) d t d x = x ′ ( t ) d t \begin{cases} \text dy=y'(t)\text dt \\ \text dx=x'(t)\text dt \end{cases} { dy=y′(t)dtdx=x′(t)dt
求微商得到 f ′ ( x ) = d y d x = y ′ ( t ) x ′ ( t ) f'(x) = \dfrac{\text dy}{\text dx} = \dfrac{y'(t)}{x'(t)} f′(x)=dxdy=x′(t)y′(t)
继续求微分可得到二阶导数等
d d y d x = y ′ ′ x ′ − y ′ x ′ ′ x ′ 2 d t \text d \dfrac{\text dy}{\text dx} = \dfrac{y''x'-y'x''}{x'^2} \text dt ddxdy=x′2y′′x′−y′x′′dt
f ′ ′ ( x ) = d 2 y d x 2 = y ′ ′ x ′ − y ′ x ′ ′ x ′ 3 f''(x) = \dfrac{\text d^2y}{\text dx^2} = \dfrac{y''x'-y'x''}{x'^3} f′′(x)=dx2d2y=x′3y′′x′−y′x′′
类似地, 设参数方程
{ x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) \begin{cases} x=x(u, v) \\ y=y(u, v) \\ z=z(u, v) \end{cases} ⎩⎪⎨⎪⎧x=x(u,v)y=y(u,v)z=z(u,v)
确定一块曲面 z = f ( x , y ) z=f(x,y) z=f(x,y), 求微分得到
{ d x = x 1 ′ d u + x 2 ′ d v d y = y 1 ′ d u + y 2 ′ d v d z = z 1 ′ d u + z 2 ′ d v \begin{cases} \text dx= x'_1\text du + x'_2\text dv \\ \text dy= y'_1\text du + y'_2\text dv \\ \text dz= z'_1\text du + z'_2\text dv \\ \end{cases} ⎩⎪⎨⎪⎧dx=x1′du+x2′dvdy=y1′du+y2′dvdz=z1′du+z2′dv
消去 d u \text du du 和 d v \text dv dv 得到
∂ ( y , z ) ∂ ( u , v ) d x + ∂ ( z , x ) ∂ ( u , v ) d y + ∂ ( x , y ) ∂ ( u , v ) d z = 0 \dfrac{\partial(y,z)}{\partial(u,v)}\text dx + \dfrac{\partial(z,x)}{\partial(u,v)}\text dy + \dfrac{\partial(x,y)}{\partial(u,v)}\text dz=0 ∂(u,v)∂(y,z)dx+∂(u,v)∂(z,x)dy+∂(u,v)∂(x,y)dz=0
其中 ∂ ( x , y ) ∂ ( u , v ) \dfrac{\partial(x,y)}{\partial(u,v)} ∂(u,v)∂(x,y) 等为雅可比行列式, 定义为
∂ ( x , y ) ∂ ( u , v ) = ∣ x 1 ′ x 2 ′ y 1 ′ y 2 ′ ∣ \frac{\partial(x,y)}{\partial(u,v)}= \begin{vmatrix} x'_1 & x'_2 \\ y'_1 & y'_2 \\ \end{vmatrix} ∂(u,v)∂(x,y)=∣∣∣∣x1′y1′x2′y2′∣∣∣∣
对比曲面的微分
d z = ∂ z ∂ x d x + ∂ z ∂ y d y \text{d}z=\frac{\partial z}{\partial x}\text{d}x+\frac{\partial z}{\partial y}\text{d}y dz=∂x∂zdx+∂y∂zdy
得到偏导数
f 1 ′ = ∂ z ∂ x = y 2 ′ z 1 ′ − y 1 ′ z 2 ′ x 1 ′ y 2 ′ − x 2 ′ y 1 ′ f 2 ′ = ∂ z ∂ y = x 1 ′ z 2 ′ − x 2 ′ z 1 ′ x 1 ′ y 2 ′ − x 2 ′ y 1 ′ f'_1 = \frac{\partial z}{\partial x} = \frac{y'_2z'_1-y'_1z'_2}{x'_1y'_2-x'_2y'_1} \\ f'_2= \frac{\partial z}{\partial y} = \frac{x'_1z'_2-x'_2z'_1}{x'_1y'_2-x'_2y'_1} \\ f1′=∂x∂z=x1′y2′−x2′y1′y2′z1′−y1′z2′f2′=∂y∂z=x1′y2′−x2′y1′x1′z2′−x2′z1′
给定一个函数 F ( x , y ) F(x,y) F(x,y), 若方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 在平面内确定一条曲线 y = f ( x ) y=f(x) y=f(x). 对该函数求微分, 得到
∂ F ∂ x d x + ∂ F ∂ y d y = 0 d y d x = − ∂ F ∂ x ∂ F ∂ y = f ′ ( x ) \frac{\partial F}{\partial x}\text{d}x+\frac{\partial F}{\partial y}\text{d}y=0 \\ \frac{\text{d}y}{\text{d}x}=-\frac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial y}}=f'(x) ∂x∂Fdx+∂y∂Fdy=0dxdy=−∂y∂F∂x∂F=f′(x)
更进一步地, 可以继续得到二阶导数等.
d d y d x = ∂ 2 F ∂ y ∂ x ∂ F ∂ x − ∂ 2 F ∂ x 2 ∂ F ∂ y ( ∂ F ∂ y ) 2 d x + ∂ 2 F ∂ y 2 ∂ F ∂ x − ∂ 2 F ∂ x ∂ y ∂ F ∂ y ( ∂ F ∂ y ) 2 d y d 2 y d x 2 = − ∂ 2 F ∂ x 2 ( ∂ F ∂ y ) 2 − 2 ∂ 2 F ∂ x ∂ y ∂ F ∂ x ∂ F ∂ y + ∂ 2 F ∂ y 2 ( ∂ F ∂ x ) 2 ( ∂ F ∂ y ) 3 {\text{d}}\frac{\text{d}y}{\text{d}x}= \frac{\dfrac{\partial^2F}{\partial y\partial x}\dfrac{\partial F}{\partial x} - \dfrac{\partial^2F}{\partial x^2}\dfrac{\partial F}{\partial y}}{\left(\dfrac{\partial F}{\partial y}\right)^2}\text{d}x + \frac{\dfrac{\partial^2F}{\partial y^2}\dfrac{\partial F}{\partial x} - \dfrac{\partial^2F}{\partial x\partial y}\dfrac{\partial F}{\partial y}}{\left(\dfrac{\partial F}{\partial y}\right)^2}\text{d}y \\ \frac{\text{d}^2y}{\text{d}x^2}= -\frac{\dfrac{\partial^2F}{\partial x^2}\left(\dfrac{\partial F}{\partial y}\right)^2-2\dfrac{\partial^2F}{\partial x\partial y}\dfrac{\partial F}{\partial x}\dfrac{\partial F}{\partial y}+\dfrac{\partial^2F}{\partial y^2}\left(\dfrac{\partial F}{\partial x}\right)^2}{\left(\dfrac{\partial F}{\partial y}\right)^3} \\ ddxdy=(∂y∂F)2∂y∂x∂2F∂x∂F−∂x2∂2F∂y∂Fdx+(∂y∂F)2∂y2∂2F∂x∂F−∂x∂y∂2F∂y∂Fdydx2d2y=−(∂y∂F)3∂x2∂2F(∂y∂F)2−2∂x∂y∂2F∂x∂F∂y∂F+∂y2∂2F(∂x∂F)2
若 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 确定一个面积非0的区域, 则在该区域内恒有 ∂ F ∂ x = ∂ F ∂ y = 0 \dfrac{\partial F}{\partial x}=\dfrac{\partial F}{\partial y}=0 ∂x∂F=∂y∂F=0, 即 d y d x \dfrac{\text{d}y}{\text{d}x} dxdy 不存在.
给定一个函数 F ( x , y , z ) F(x,y,z) F(x,y,z), 若方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 确定一个曲面 z = f ( x , y ) z=f(x,y) z=f(x,y), 对该函数求微分, 得到
∂ F ∂ x d x + ∂ F ∂ y d y + ∂ F ∂ z d z = 0 d z = − ∂ F ∂ x ∂ F ∂ z d x − ∂ F ∂ y ∂ F ∂ z d y \frac{\partial F}{\partial x}\text{d}x+\frac{\partial F}{\partial y}\text{d}y+\frac{\partial F}{\partial z}\text{d}z=0 \\ \text{d}z=-\frac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial z}}\text{d}x-\frac{\dfrac{\partial F}{\partial y}}{\dfrac{\partial F}{\partial z}}\text{d}y ∂x∂Fdx+∂y∂Fdy+∂z∂Fdz=0dz=−∂z∂F∂x∂Fdx−∂z∂F∂y∂Fdy
对比曲面的微分
d z = ∂ z ∂ x d x + ∂ z ∂ y d y \text{d}z=\frac{\partial z}{\partial x}\text{d}x+\frac{\partial z}{\partial y}\text{d}y dz=∂x∂zdx+∂y∂zdy
得到 f f f 的偏导数为
f 1 ′ = ∂ z ∂ x = − ∂ F ∂ x ∂ F ∂ z f 2 ′ = ∂ z ∂ y = − ∂ F ∂ y ∂ F ∂ z f'_1 = \frac{\partial z}{\partial x} = -\frac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial z}} \\ f'_2 = \frac{\partial z}{\partial y} = -\frac{\dfrac{\partial F}{\partial y}}{\dfrac{\partial F}{\partial z}} \\ f1′=∂x∂z=−∂z∂F∂x∂Ff2′=∂y∂z=−∂z∂F∂y∂F
考虑 y = f ( x ) y=f(x) y=f(x), 其反函数 f − 1 f^{-1} f−1 有 x = f − 1 ( y ) x= f^{-1}(y) x=f−1(y), 求微分得到
d y = f ′ ( x ) d x d x = ( f − 1 ) ′ ( y ) d y \text{d}y=f'(x)\text{d}x \\ \text{d}x=(f^{-1})'(y)\text{d}y \\ dy=f′(x)dxdx=(f−1)′(y)dy
而有
d x d y = 1 d y d x \frac{\text{d}x}{\text{d}y}=\frac{1}{\dfrac{\text{d}y}{\text{d}x}} \\ dydx=dxdy1
得到
( f − 1 ) ′ ( y ) = 1 f ′ ( x ) ( f − 1 ) ′ ( x ) = 1 f ′ ( f − 1 ( x ) ) (f^{-1})'(y)=\frac{1}{f'(x)} \\ (f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))} (f−1)′(y)=f′(x)1(f−1)′(x)=f′(f−1(x))1
如计算 sin x \sin x sinx 或 e x e^x ex 的反函数的导数, 应用上述结论得到
arcsin ′ x = 1 sin ′ ( arcsin x ) = 1 cos ( arcsin x ) = 1 1 − x 2 \arcsin' x=\frac{1}{\sin'(\arcsin x)}=\frac{1}{\cos(\arcsin x)}=\frac{1}{\sqrt{1-x^2}} arcsin′x=sin′(arcsinx)1=cos(arcsinx)1=1−x21
ln ′ x = 1 e ln x = 1 x \ln'x=\frac{1}{e^{\ln x}} = \frac 1x ln′x=elnx1=x1
考虑构造一个多项式 p ( x ) = ∑ i c i ( x − x 0 ) i p(x) = \sum_i{c_i(x-x_0)^i} p(x)=i∑ci(x−x0)i 逼近一个 n + 1 n+1 n+1 阶可导连续的函数 f ( x ) f(x) f(x), 可令
lim x → x 0 f ( x ) p ( x ) = 1 \lim_{x\to x_0}\frac{f(x)}{p(x)}=1 x→x0limp(x)f(x)=1
应用洛必达法则, 依次可得到
c 0 = f ( x 0 ) c 1 = f ′ ( x 0 ) c 2 = f ′ ′ ( x 0 ) 2 ⋯ c i = f ( i ) ( x 0 ) i ! \begin{aligned} c_0 &= f(x_0) \\ c_1 &= f'(x_0) \\ c_2 &= \frac{f''(x_0)}{2} \\ &\cdots \\ c_i &= \frac{f^{(i)}(x_0)}{i!} \end{aligned} c0c1c2ci=f(x0)=f′(x0)=2f′′(x0)⋯=i!f(i)(x0)
即 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处的泰勒展开如下
f ( x ) = ∑ i = 0 n f ( i ) ( x 0 ) i ! ( x − x 0 ) i + R n ( x ) f(x)=\sum_{i=0}^{n}\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i + R_n(x) f(x)=i=0∑ni!f(i)(x0)(x−x0)i+Rn(x) 其中 R n ( x ) R_n(x) Rn(x) 为余项, 依展开方式不同, 有不同余项, 如下
设多元函数 f ( x ⃗ ) f(\vec{x}) f(x) 在 x 0 ⃗ \vec{x_0} x0 n n n 阶可偏导, 则其泰勒展开如下, 其中 x 0 ⃗ \vec{x_0} x0 和 x ⃗ \vec{x} x 均为列向量.
f ( x ⃗ ) = f ( x 0 ⃗ ) + ( ∂ f ∂ x 1 ∂ f ∂ x 2 ⋯ ∂ f ∂ x n ) ( x ⃗ − x 0 ⃗ ) + 1 2 ! ( x ⃗ − x 0 ⃗ ) T ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ) ( x ⃗ − x 0 ⃗ ) + R 2 ( x ⃗ ) f(\vec{x}) = f(\vec{x_0}) + \begin{pmatrix} \dfrac{\partial f}{\partial x_1} & \dfrac{\partial f}{\partial x_2} & \cdots & \dfrac{\partial f}{\partial x_n} \end{pmatrix}(\vec{x}-\vec{x_0}) + \dfrac{1}{2!} (\vec{x}-\vec{x_0})^T \begin{pmatrix} \cfrac{\partial^2 f}{\partial x_1^2} & \cfrac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \cfrac{\partial^2 f}{\partial x_1 \partial x_n} \\ \cfrac{\partial^2 f}{\partial x_2 \partial x_1} & \cfrac{\partial^2 f}{\partial x_2^2} & \cdots & \cfrac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \cfrac{\partial^2 f}{\partial x_n \partial x_1} & \cfrac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \cfrac{\partial^2 f}{\partial x_n^2} \\ \end{pmatrix} (\vec{x}-\vec{x_0}) + R_2(\vec{x}) f(x)=f(x0)+(∂x1∂f∂x2∂f⋯∂xn∂f)(x−x0)+2!1(x−x0)T⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛∂x12∂2f∂x2∂x1∂2f⋮∂xn∂x1∂2f∂x1∂x2∂2f∂x22∂2f⋮∂xn∂x2∂2f⋯⋯⋱⋯∂x1∂xn∂2f∂x2∂xn∂2f⋮∂xn2∂2f⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞(x−x0)+R2(x)
为公式整洁, 式中对 f f f 的偏导数均略去参数 ( x 0 ⃗ ) (\vec{x_0}) (x0). 从第四项起需要三维矩阵, 即张量才能表达. 但特别地, 如果函数在 x 0 x_0 x0 处的多阶偏导数的求导顺序是相互无关的, 展开式可化简为
f ( x ⃗ ) = ∑ i = 0 n 1 i ! [ ( x ⃗ − x 0 ⃗ ) T ∇ ] i f ( x 0 ⃗ ) + R n ( x ⃗ ) f(\vec{x}) = \sum_{i=0}^n \frac{1}{i!}\left[(\vec{x}-\vec{x_0})^T\nabla\right]^if(\vec{x_0}) + R_n(\vec{x}) f(x)=i=0∑ni!1[(x−x0)T∇]if(x0)+Rn(x)
其中 ( x ⃗ − x 0 ⃗ ) T ∇ (\vec{x}-\vec{x_0})^T\nabla (x−x0)T∇ 为 n n n 项式
( x ⃗ − x 0 ⃗ ) T ∇ = x 1 ∂ ∂ x 1 + x 2 ∂ ∂ x 2 + ⋯ + x n ∂ ∂ x n (\vec{x}-\vec{x_0})^T\nabla = x_1\dfrac{\partial}{\partial x_1} + x_2\dfrac{\partial}{\partial x_2} + \cdots + x_n\dfrac{\partial}{\partial x_n} (x−x0)T∇=x1∂x1∂+x2∂x2∂+⋯+xn∂xn∂
[ ( x ⃗ − x 0 ⃗ ) T ∇ ] i \left[(\vec{x}-\vec{x_0})^T\nabla\right]^i [(x−x0)T∇]i 则为该 n n n 项式的展开
[ ( x ⃗ − x 0 ⃗ ) T ∇ ] i = ∑ i 1 + i 2 + ⋯ + i n = i i ! i 1 ! i 2 ! ⋯ i n ! x 1 i 1 x 2 i 2 ⋯ x i i n ∂ i ∂ x 1 i 1 ∂ x 2 i 2 ⋯ ∂ x i i n \left[(\vec{x}-\vec{x_0})^T\nabla\right]^i = \sum_{i_1+i_2+\cdots+i_n=i}\frac{i!}{i_1!i_2!\cdots i_n!}x_1^{i_1}x_2^{i_2}\cdots x_i^{i_n}\frac{\partial^i}{\partial x_1^{i_1} \partial x_2^{i_2} \cdots \partial x_i^{i_n} } [(x−x0)T∇]i=i1+i2+⋯+in=i∑i1!i2!⋯in!i!x1i1x2i2⋯xiin∂x1i1∂x2i2⋯∂xiin∂i
若函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 的去心邻域 U ˚ ( x 0 ) \mathring U(x_0) U˚(x0) 内有
f ( x ) > f ( x 0 ) ( f ( x ) < f ( x 0 ) ) f(x) > f(x_0) \ (f(x) < f(x_0)) f(x)>f(x0) (f(x)<f(x0))
则称函数在 x 0 x_0 x0 处取极小值(或极大值).
据费马引理, 若函数在 x 0 x_0 x0 处可导, 则 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0.
若函数在 x 0 x_0 x0 处二阶可导, 且 f ′ ( x 0 ) = 0 f'(x_0)=0 f′(x0)=0, 则有泰勒展开
f ( x ) = f ( x 0 ) + f ′ ′ ( x 0 ) 2 ( x − x 0 ) 2 + o [ ( x − x 0 ) 2 ] f(x)=f(x_0)+\frac{f''(x_0)}{2}(x-x_0)^2+o[(x-x_0)^2] f(x)=f(x0)+2f′′(x0)(x−x0)2+o[(x−x0)2]
由此我们得到一个函数在 x 0 x_0 x0 取极值的充分条件.
若 f ′ ′ ( x 0 ) > 0 f''(x_0) > 0 f′′(x0)>0, 函数在 x 0 x_0 x0 取极小值, 若 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f′′(x0)<0, 函数在 x 0 x_0 x0 取极大值.
一般地, 若多元函数 f ( x 0 ⃗ ) f(\vec{x_0}) f(x0) 在 x 0 ⃗ \vec{x_0} x0 一阶偏导全部为零
∂ f ( x 0 ⃗ ) ∂ x i ≡ 0 \frac{\partial f(\vec{x_0})}{\partial x_i}\equiv0 ∂xi∂f(x0)≡0
二阶可偏导, 则有泰勒展开
f ( x ⃗ ) = f ( x 0 ⃗ ) + 1 2 ! ( x ⃗ − x 0 ⃗ ) T H f ( x 0 ⃗ ) ( x ⃗ − x 0 ⃗ ) + R 2 ( x ⃗ ) H f ( x 0 ⃗ ) = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ) f(\vec{x})=f(\vec{x_0})+ \dfrac{1}{2!} (\vec{x}-\vec{x_0})^T H_f(\vec{x_0}) (\vec{x}-\vec{x_0}) + R_2(\vec{x}) \\ H_f(\vec{x_0}) = \begin{pmatrix} \cfrac{\partial^2 f}{\partial x_1^2} & \cfrac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \cfrac{\partial^2 f}{\partial x_1 \partial x_n} \\ \cfrac{\partial^2 f}{\partial x_2 \partial x_1} & \cfrac{\partial^2 f}{\partial x_2^2} & \cdots & \cfrac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \cfrac{\partial^2 f}{\partial x_n \partial x_1} & \cfrac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \cfrac{\partial^2 f}{\partial x_n^2} \\ \end{pmatrix} f(x)=f(x0)+2!1(x−x0)THf(x0)(x−x0)+R2(x)Hf(x0)=⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛∂x12∂2f∂x2∂x1∂2f⋮∂xn∂x1∂2f∂x1∂x2∂2f∂x22∂2f⋮∂xn∂x2∂2f⋯⋯⋱⋯∂x1∂xn∂2f∂x2∂xn∂2f⋮∂xn2∂2f⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
由此我们得到一个函数在 x 0 ⃗ \vec{x_0} x0 取极值的充分条件.
当矩阵 H f ( x 0 ⃗ ) H_f(\vec{x_0}) Hf(x0) 是正定矩阵(或负定矩阵)时, 在去心领域 U ˚ ( x 0 ⃗ ) \mathring U(\vec{x_0}) U˚(x0) 内恒有 x ⃗ T H f ( x 0 ⃗ ) x ⃗ > 0 \vec{x}^TH_f(\vec{x_0})\vec{x} > 0 xTHf(x0)x>0 (或 x ⃗ T H f ( x 0 ⃗ ) x ⃗ < 0 \vec{x}^TH_f(\vec{x_0})\vec{x} < 0 xTHf(x0)x<0 ), 函数在 x 0 ⃗ \vec{x_0} x0 取极小值(或极大值).
曲线 L L L 的一部分由参数方程 { y = y ( t ) x = x ( t ) \begin{cases} y=y(t) \\ x=x(t) \end{cases} { y=y(t)x=x(t) 确定, 这部分曲线上某一点处的曲率为
∣ d 2 y d t 2 d x d t − d y d t d 2 x d t 2 ∣ ( d x d t ) 2 + ( d y d t ) 2 3 = ∣ y ′ ′ x ′ − y ′ x ′ ′ ∣ x ′ 2 + y ′ 2 3 \frac{\left| \dfrac{\text d^2y}{\text dt^2}\dfrac{\text dx}{\text dt} - \dfrac{\text dy}{\text dt}\dfrac{\text d^2x}{\text dt^2} \right|} {\sqrt{\left(\dfrac{\text dx}{\text dt}\right)^2 + \left(\dfrac{\text dy}{\text dt}\right)^2}^3} = \frac{\left| y''x'-y'x'' \right|}{\sqrt{x'^2+y'^2}^3} (dtdx)2+(dtdy)23∣∣∣∣dt2d2ydtdx−dtdydt2d2x∣∣∣∣=x′2+y′23∣y′′x′−y′x′′∣
记忆该式, 可对比参数方程确定的函数的二阶导数 d 2 y d x 2 = y ′ ′ x ′ − y ′ x ′ ′ x ′ 3 \dfrac{\text d^2y}{\text d x^2} = \dfrac{y''x'-y'x''}{x'^3} dx2d2y=x′3y′′x′−y′x′′, 将分母 x ′ x' x′ 换成 x ′ 2 + y ′ 2 \sqrt{x'^2+y'^2} x′2+y′2.
若 x = x ( t ) = t x=x(t)=t x=x(t)=t, 即 y = f ( x ) y=f(x) y=f(x), 曲率可化简为
∣ d 2 y d t 2 ∣ 1 + ( d y d t ) 2 3 = ∣ y ′ ′ ∣ 1 + y ′ 2 3 \frac{\left| \dfrac{\text d^2y}{\text dt^2} \right|} {\sqrt{ 1 + \left(\dfrac{\text dy}{\text dt}\right)^2}^3} = \frac{\left| y'' \right|}{\sqrt{1+y'^2}^3} 1+(dtdy)23∣∣∣∣dt2d2y∣∣∣∣=1+y′23