- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
线性代数是大学数学中非常核心的基础课程,教材繁多,国内外有许多经典的教材。国内比较有名且使用较为广泛的线性代数中文教材见书籍8。书籍8线性代数中文教材推荐:(a)简明线性代数(丘维声);(b)线性代数(居于马);(c)线性代数(李尚志);(d)线性代数(李炯生等);(e)线性代数五讲(龚昇);(f)线性代数的几何意义(任广千等)北京大学的丘维声教授编写的《简明线性代数》[17]是北京市高等教育精品
- 人工智能中的线性代数与矩阵论学习秘诀之学习路线
audyxiao001
人工智能怎么学线性代数人工智能矩阵
线性代数和矩阵论的学习对于打好AI的理论基础非常重要,要加以重视和认真学习。下面给出学习的路线仅供参考,个人可以根据自己的知识储备、数学能力以及研究方向加以调整。具体的学习路线见图3-8。在初级入门阶段,主要打好线性代数的理论基础,建议中文和英文教材各选一本进行学习,即从初级入门教材1~4和5~8中各选一本进行学习。在中级提高阶段,主要弄清楚线性代数理论的本质和物理含义,特别是线性代数的几何意义,
- Schur引理
patrickpdx
矩阵论矩阵
这是Schur引理的引理Schur引理的复矩阵版本和实矩阵版本摘自《矩阵论教程》第2版,张绍飞,p49
- 矩阵函数
patrickpdx
矩阵论
文章目录矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数通过Jordan标准形求矩阵函数待定系数法求矩阵函数矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大学出版社,2000.p158通过Jordan标准形求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大
- 矩阵分解——QR分解
patrickpdx
矩阵论
文章目录满秩方阵的QR分解矩阵QR分解例题列满秩矩阵的QR分解满秩方阵的QR分解可以看到,该证明过程是构造性的,即通过构造出了QQQ,RRR的方式,证明了QR分解的存在性,不仅证明了存在性,还为我们提供了QR分解中QQQ和RRR的求解方法矩阵QR分解例题摘自《矩阵论》程云鹏,西安交通大学,1999年6月第2版,p203列满秩矩阵的QR分解摘自《矩阵论教程》第二版张绍飞2.1节
- 【线性代数与矩阵论】矩阵的酉相似
你哥同学
线性代数与矩阵论线性代数矩阵
矩阵的酉相似(合同变换)2023年11月7日#algebra文章目录矩阵的酉相似(合同变换)1.酉矩阵2.酉相似3.Schur分解定理4.正规矩阵5.酉相似对角化6.Hermit矩阵,反Hermit矩阵及酉矩阵的特性7.Hermit矩阵的正定性下链1.酉矩阵设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,若A{A}A满足AHA=AAH=IA^\mathrmHA=AA^
- 深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
搬砖班班长
深度学习人工智能学习经验分享
经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。下面给出几个链接,可以用于平时充电学习。知乎上的:机器学习与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
- 【线性代数与矩阵论】范数理论
你哥同学
线性代数与矩阵论线性代数矩阵概率论范数
范数理论2023年11月16日文章目录范数理论1.向量的范数2.常用向量范数3.向量范数的等价性4.矩阵的范数5.常用的矩阵范数6.矩阵范数与向量范数的相容性7.矩阵范数诱导的向量范数8.由向量范数诱导的矩阵范数9.矩阵范数的酉不变性10.矩阵范数的等价性11.长方阵的范数下链1.向量的范数向量的长度也称为向量的二范数[!quote]-长度的定理设x,y,z∈Cn , λ∈C{x,y,z\in
- 【线性代数与矩阵论】矩阵的谱半径与条件数
你哥同学
线性代数与矩阵论线性代数矩阵概率论条件数
矩阵的谱半径与条件数2023年11月18日文章目录矩阵的谱半径与条件数1.矩阵的谱半径2.谱半径与范数的关系3.矩阵的条件数下链1.矩阵的谱半径定义设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,λ1,λ2,⋯ ,λn{\lambda_1,\lambda_2,\cdots,\lambda_n}λ1,λ2,⋯,λn是A的特征值,则称ρ(A)=max1≤i≤n∣λi∣\
- SVD分解原理及基于SVD分解的图像压缩和去噪
nwsuaf_huasir
信号处理
SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。SVD分解的公式如下,其中U和V都为正交矩阵,中间的为特征值构成的对角矩阵,相对于正交对角分解,SVD分解的适应性更强,应为A不必是方阵,下面是SVD分解的公式。用SVD做图像压
- 个人猜测:关于《矩阵论》中的QR分解为什么用Q来表示正交矩阵(orthogonal matrix )
SleepingBug
矩阵线性代数
为什么QR分解用Q来表示正交矩阵(orthogonalmatrix)?搜过Google,问过ChatGPT,什么说是约定俗成,什么说是历史原因,都没有一个合理的解释。都没有准确的答案,下面这两个链接还有人追溯最开始用QR写法的文章,但还是没有结论1)linearalgebra-Whyareorthogonalmatricessooftendenoted$Q$?-MathOverflow2)line
- 只不过孤岛罢了:我的2023年总结
染念
折腾心得年终总结人工智能深度学习性能优化c++
2023已悄然过去,还记得跨年夜那天,我突然接到一星期要期末考的消息,我的内心是多么奔溃,先不说一天一门强度如此之高,重要的是矩阵论,工程优化等等科目,还要速成,于是麻木得预习一日又一日,终于在10号结束了研一上的所有考试。剩下的就靠老师捞菜菜了。好了,吐槽的完了,现在正式地总结我的23年。文章目录身份上知识上比赛上思想上创作内容上感情上项目上数码产品上总结身份上这年惊喜的是1月份,我在蓝桥云课获
- 加密解密工具 之 希尔密码
一个工具箱
希尔密码(HillCipher),是运用基本矩阵论原理的替换密码,每个字母当作26进制数字:A=0,B=1,C=2...一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果mod26。用作加密的矩阵(即密匙)必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。简介希尔密码是运用基本矩阵论原理的替换密码,由LesterS.Hill在1929年发明。每个字母当作26进制数字
- 利用矩阵特征值解决微分方程【1】
唠嗑!
信息论安全矩阵网络安全
目录一.特征值介绍二.单变量常微分方程三.利用矩阵解决微分方程问题四.小结4.1矩阵论4.2特征值与特征向量内涵4.3应用一.特征值介绍线性代数有两大基础问题:如果A为对角阵的话,那么问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。在已知解的情况下,可以利用矩阵行列式解决问题。根据Cramer定则:将以下矩阵的行列式看成一个多项式:该多项式的根即为特征值。当矩阵维度较高时,这个方
- 《矩阵分析》笔记
热水过敏
矩阵笔记线性代数
来源:【《矩阵分析》期末速成主讲人:苑长(5小时冲上90+)】https://www.bilibili.com/video/BV1A24y1p76q?vd_source=c4e1c57e5b6ca4824f87e74170ffa64d这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没时间听太长的课,就看了b站上这个视频,笔记几乎就是原视频copy,和教材相比有一些没提到(如奇异值分解、House
- [矩阵论]哈尔滨工业大学全72讲
东北霸主劳德利
全科笔记矩阵python机器学习
主页有博主其他上万字精品笔记,例如数值分析,电磁学.01哈尔滨工业大学严质彬教授的矩阵分析课程,讲解了矩阵分析的基础知识和重要性。教材没有特别指定,建议购买北京理工大学的水荣昌的《矩阵分析》。课程假定学生已经学过高等数学中的线性代数,旨在为控制学科打下基础。讲授了线性空间和线性映射的概念,介绍了集合的笛卡尔积和映射的记号。00:00矩阵分析课程介绍:这个视频是关于矩阵分析课程的介绍。讲师强调了矩阵
- 【线性代数与矩阵论】Jordan型矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习线性控制系统Jordan型矩阵
Jordan型矩阵2023年11月3日#algebra文章目录Jordan型矩阵1.代数重数与几何重数2.Jordan块与Jordan标准型2.1最小多项式与Jordan标准型2.2两类重要矩阵3.矩阵的Jordan分解3.1Jordan分解的应用下链1.代数重数与几何重数在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被
- 实对称矩阵的特征值求法_正交矩阵学习小结
weixin_39548193
实对称矩阵的特征值求法已知协方差矩阵求特征值矩阵转置相关公式
整理一下矩阵论学习中的相关概念。从正交矩阵开始正交矩阵定义1称n阶方阵A是正交矩阵,若正交矩阵有几个重要性质:A的逆等于A的转置,即A的行列式为±1,即A的行(列)向量组为n维单位正交向量组上述3个性质可以看做是正交矩阵的判定准则,我们可以通过上述准则简单地判断一个矩阵是否是正交矩阵。下面,我们将从线性变换的角度,来看正交矩阵还有哪些独特的性质。首先给出正交变换的定义:定义2欧氏空间V的线性变换T
- 机器学习算法工程师
prolrj2015
算法
职位要求1、扎实的数学功底和分析技能,精通计算机视觉中的数学方法;高等数学(微积分)、线性代数(矩阵论)、随机过程、概率论、摄影几何、模型估计、数理统计、张量代数、数据挖掘、数值分析等;2、具备模式识别、图像处理、机器视觉、信号处理和人工智能等基础知识;对图像特征、机器学习有深刻认识与理解;3、精通图像处理基本概念和常用算法包括图像预处理算法和高级处理算法;常见的图像处理算法,包括增强、分割、复原
- 【矩阵论】Chapter 4—特征值和特征向量知识点总结复习
unique_pursuit
课程矩阵线性代数
文章目录1特征值和特征向量2对角化3Schur定理和正规矩阵1特征值和特征向量定义设σ\sigmaσ为数域FFF上线性空间VVV上的一个线性变换,一个非零向量v∈Vv\inVv∈V,如果存在一个λ∈F\lambda\inFλ∈F使得σ(v)=λv\sigma(v)=\lambdavσ(v)=λv,则λ\lambdaλ称为σ\sigmaσ的特征值。σ\sigmaσ的特征值的集合称为σ\sigmaσ的
- 【矩阵论】Chapter 2—内积空间知识点总结复习
unique_pursuit
课程矩阵线性代数机器学习
文章目录内积空间1内积空间2标准正交向量集3Gram-Schmidt正交化方法4正交子空间5最小二乘问题6正交矩阵和酉矩阵内积空间1内积空间内积空间定义设VVV是在数域FFF上的向量空间,则VVV到FFF的一个代数运算记为(α,β)(\alpha,\beta)(α,β)。如果(α,β)(\alpha,\beta)(α,β)满足以下条件:(α,β)=(β,α)‾(\alpha,\beta)=\ove
- 雷达算法相关技术栈
奔袭的算法工程师
算法
作为一名雷达算法工程师,总结一下相关的技术栈。一、数学基础信号与系统、数字信号处理、概率论与数理统计、随机信号分析、随机过程、矩阵论二、雷达算法1.雷达基本原理(测距、测速、测角)2.波形设计对雷达测量的影响3.距离模糊、速度模糊、角度模糊产生的原因和解决办法4.调频连续波的测距、测速、测角原理(多维FFT累加)5.波束形成和滤波器设计,以及对于波束的影响6.检测门限、概率与奈-皮尔逊准则7.不同
- 《矩阵论》学习笔记(一):第一章 线性空间与线性变换
熊宝宝爱学习
数学线性代数矩阵
《矩阵论》学习笔记:第一章线性空间与线性变换文章目录《矩阵论》学习笔记:第一章线性空间与线性变换一、线性空间1.1线性空间1.2线性变换及其矩阵1.2.1线性变换及其应用1.2.2线性变换的矩阵表示1.2.3特征值和特征向量1.2.4对角矩阵1.2.6jordan标准型1.3两个特殊的线性空间1.3.1欧氏空间1.3.2酉空间二、线性变换及其性质第一章线性空间与线性变换一.线性空间二.线性变换及其
- 《矩阵理论》笔记 1 — 线性空间与线性变换
frozendure
矩阵理论矩阵线性代数学习
矩阵论-线性空间与线性变换文章目录矩阵论-线性空间与线性变换一、线性空间1、线性空间1.1向量空间1.2线性空间1.3线性空间典型例子2、线性空间的基和维数2.1线性组合2.2线性相关与线性无关2.3基和维数2.4坐标3.基变换和坐标变换4.线性空间的同构4.1等价关系4.2性质二、线性子空间1、线性子空间2、维数公式3、子空间的直和三、线性变换1、映射2、线性变换3、线性变换的运算3.1线性变换
- 【矩阵论】矩阵的相似标准型(3)
kodoshinichi
数学#矩阵论线性代数矩阵论对角化线性变换
矩阵的相似标准型之“可对角化的条件”本节主要围绕着矩阵(或线性变换)能否进行对角化以及如何进行对角化进行讨论。【对角化的判断】矩阵的对角化:对给定的矩阵,判断能否相似于对角阵线性变换的对角化:对给定的线性空间上的线性变换,判断是否存在空间的一组基,使得其矩阵是对角阵。前面有关线性变换、线性空间和矩阵讨论了那么多,我们已经可以在矩阵和线性变换之间建立一个对应关系了,因此矩阵的对角化问题和相似变换的对
- 人工智能中的线性代数与矩阵论学习秘诀之知识体系
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
很多人学完线性代数、矩阵论两门课程后,完全不知道自己学了些什么,也不知道学这两门课程有什么用,心中满是疑惑。首先线性代数和矩阵论属于代数学范畴,既然如此,让我们先回忆一下从小学到高中是如何学习代数的。以实数为例,先了解什么是实数,然后学习实数的基本运算,接下来将多个实数打包在一起构成集合并研究不同集合的性质和变换。现在将实数换成向量,按照类似的步骤走一遍这个流程,我们将得到:“先了解什么是向量,然
- 【线性代数与矩阵论】坐标变换与相似矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习
坐标变换与相似矩阵2023年11月4日#algebra文章目录坐标变换与相似矩阵1.基变换与坐标变换2.相似变换下链1.基变换与坐标变换坐标变换与基变换都要通过过渡矩阵AAA来实现。设有一向量f⃗\vecff,xxx是在基α\alphaα下该向量的坐标,yyy是在新基β\betaβ下该向量的坐标,则基变换为:β=αA , A=α−1β\beta=\alphaA\,\,,\,\,A=\alpha
- 矩阵论(零):线性代数基础知识整理(2)——矩阵的秩与向量组的秩
exp(i)
机器学习的数学基础线性代数矩阵论机器学习
矩阵论专栏:专栏(文章按照顺序排序)本篇博客承接上篇矩阵论(零):线性代数基础知识整理(1)——逆矩阵、初等变换、满秩分解,主要整理秩相关的结论。线性方程组的解与向量组的秩线性方程组的解(初步讨论)向量组的秩线性方程组的解(进一步讨论)零矩阵的判定定理关于秩的重要结论(结合向量组的秩、分块矩阵的秩的方法进行总结)矩阵的秩与向量组的秩的关系常用矩阵秩相关的等式和不等式公式1:∣r(A)−r(B)∣⩽
- 矩阵论(零):线性代数基础知识整理(5)——特征值与相似
exp(i)
机器学习的数学基础线性代数矩阵
矩阵论专栏:专栏(文章按照顺序排序)本篇博客的上篇是矩阵论(零):线性代数基础知识整理(4)——线性空间与线性变换,梳理了线性空间与线性变换的相关内容。本文主要整理矩阵的特征值与相似的相关内容。方阵的特征值特征值的定义及性质特殊矩阵的特征值与特征向量(对角矩阵、上(下)三角矩阵、酋矩阵、分块矩阵)AAA、ATA^TAT、AHA^HAH的特征值的关系AHAA^HAAHA和AAHAA^HAAH的特征值
- [矩阵论] Unit 6. 矩阵的 Kronecker 积与 Hadamard 积 - 知识点整理
PeakCrosser
矩阵论矩阵线性代数
注:以下内容均由个人整理,不保证完全准确,如有纰漏,欢迎交流讨论参考:杨明,刘先忠.矩阵论(第二版)[M].武汉:华中科技大学出版社,20056矩阵的Kronecker积与Hadamard积6.1Kronecker积与Hadamard积的定义K-积和H-积定义K-积:Am×n⊗Bs×t=[aijB]ms×nt=[a11B⋯a1nBa21B⋯a2nB⋯⋯⋯am1B⋯amnB]A_{m\timesn}
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr