CQF笔记Primer数学基础

CQF笔记Primer数学基础

    • 1 Calculus 微积分
      • 1.1 Basic Terminology 基本术语
      • 1.2 Functions 函数
        • 1.2.1 Explicit/Implicit Representation 显示/隐式表示
        • 1.2.2 Types of function
          • Polynomials 多项式
          • Modulus 模(绝对值)
      • 1.3 Limit 极限
        • 1.3.1 exponential and log functions 指数和对数函数
        • 1.3.2 Trigonometric/Circular Functions 三角函数
        • 1.3.3 Hyperbolic Functions 双曲函数
      • 1.4 Differentiation 微分
        • 1.4.1 Product Rule 乘法法则
        • 1.4.2 Function of a Function Rule 函数的函数法则
        • 1.4.3 Quotient Rule 商数法则
        • 1.4.4 Implicit Differentiation 隐式微分
        • 1.4.5 Higher Derivatives 高阶导数
        • 1.4.6 Leibniz Rule 莱布尼兹法则
        • 1.4.7 Further Limits 高阶极限
      • 1.5 Taylor Series 泰勒级数
        • 1.5.1 The Binomial Expansion 二项式展开
      • 1.6 Integration 积分
        • 1.6.1 The Indefinite Integral 不定积分
        • 1.6.2 The Definite Integral 定积分
        • 1.6.3 Integration by Substitution 代换积分法/换元法
        • 1.6.4 Integration by Parts 分部积分法
        • 1.6.5 Reduction Formula 约化公式
        • 1.6.6 Other Results 其他法则
      • 1.7 Complex Numbers 复数
        • 1.7.1 Arithmetic 算术运算
        • 1.7.2 Complex Conjugate Identities 共轭复数的性质
        • 1.7.3 Polar Form 极坐标形式
      • 1.8 Functions of Several Variables: Multivariate Calculus 多变量函数:多变量微积分
        • 1.8.1 The Chain Rule I 链式法则I
        • 1.8.2 The Chain Rule II 链式法则II
        • 1.8.3 Taylor for two Variables 两变量泰勒展开
    • 2 Linear Algebra 线性代数
      • 2.1 Properties of Vectors 向量的性质
        • 2.1.1 Vector Arithmetic 向量算术
        • 2.1.2 Concept of Length in R n R_n Rn n维空间中的向量长度
      • 2.2 Matrices 矩阵
        • 2.2.1 Matrix Arithmetic 矩阵算术
        • 2.2.2 Matrix Multiplication 矩阵乘法
        • 2.2.3 Transpose 转置
        • 2.2.4 Matrix Representation of Linear Equations 线性方程组的矩阵表达形式
      • 2.3 Using Matrix Notation For Solving Linear Systems 矩阵术语
      • 2.4 Matrix Inverse 逆变换
      • 2.5 Orthogonal Matrices 正交矩阵
      • 2.6 Eigenvalues and Eigenvectors 特征值和特征向量
        • 2.6.1 Criteria for invertibility 可逆
    • 3 Differential Equations 微分方程
      • 3.1 Introduction 简介
        • 3.1.1 Initial & Boundary Value Problems 初始值问题和边界值问题
      • 3.2 First Order Ordinary Differential Equations 一阶常微分方程
        • 3.2.1 One Variable Missing 缺少一个变量
        • 3.2.2 Variable Separable 变量分离
        • 3.2.3 Linear Equations 线性方程
      • 3.3 Second Order ODE.s 二阶ODE
        • 3.3.1 Simplest Cases 简单情况
        • 3.3.2 Linear ODE.s of Order at least 2 二次及二次以上ODE
        • 3.3.3 Linear ODE.s with Constant Coeffcients 常系数线性ODE
      • 3.4 General nth Order Equation n阶方程
      • 3.5 Non-Homogeneous Case - Method of Undetermined Coefficients 非齐次
        • 3.5.1 Failure Case 不可直接求解的形式
      • 3.6 Linear ODE.s with Variable Coefficients - Euler Equation 可变系数的线性ODE - (柯西-)欧拉方程
        • 3.6.1 Reduction to constant coefficient 退化为常系数方程
      • 3.7 Partial Differential Equations 偏微分方程(略)
    • 1 Probability 概率
      • 1.1 Preliminaries 知识准备
        • 1.1.1 Probability Scale 概率度量
        • 1.1.2 Probability of an Event 事件概率
        • 1.1.3 The Complimentary Event E' 事件E的补集
      • 1.2 Probability Diagrams 用图表表示概率
      • 1.3 Conditional Probability 条件概率
      • 1.4 Mutually exclusive and Independent events 互斥和独立
      • 1.5 Two famous problems
      • 1.6 Random Variables 随机变量
        • 1.6.1 Notation 术语
        • 1.6.2 Definition 定义
        • 1.6.3 Types of Random variable 随机变量的种类
      • 1.7 Probability Distributions 概率分布
        • 1.7.1 Discrete distributions 离散分布
        • 1.7.2 Continuous Distributions 连续分布
      • 1.8 Cumulative Distribution Function CDF 累积分布函数
        • 1.8.1 Discrete Random variables
        • 1.8.2 Continuous Random variables 连续随机变量
      • 1.9 Expectation and Variance 期望和方差
        • 1.9.1 Discrete Random variables 离散随机变量
        • 1.9.2 Continuous Random Variables 连续随机变量
      • 1.10 Expectation Algebra 期望值的代数运算
      • 1.11 Moments 矩
      • 1.12 Covariance 协方差
      • 1.13 Important Distributions 重要分布
        • 1.13.1 Binomial Distribution 二项式分布
        • 1.13.2 Poisson Distribution 泊松分布
        • 1.13.3 Normal Distribution 正态分布
        • 1.13.4 Standard Normal distribution 标准正态分布(z分布)
        • 1.13.5 Common regions 常用区间
      • 1.14 Central Limit Theorem 中心极限定理
    • 2 Statistics 统计
      • 2.1 Sampling 采样
        • 2.1.1 Proof 证明
      • 2.2 Maximum Likelihood Estimation 极大似然估计 MLE
        • 2.2.1 Motivating example
        • 2.2.2 In General
        • 2.2.3 Normal Distribution
      • 2.3 Regression and Correlation 回归和相关性
        • 2.3.1 Linear regression 线性回归
        • 2.3.2 Correlation 相关系数
        • 2.3.3 Pearson Product-Moment Correlation Coefficient
        • 2.3.4 Spearman’s Rank Correlation Coefficient 基于排序的相关性
      • 2.4 Time Series 时间序列
        • 2.4.1 Moving Average

1 Calculus 微积分

1.1 Basic Terminology 基本术语

符号 含义 符号 含义 符号 含义
∃ \exists 存在 → \rightarrow 给定 ≡ \equiv 等价于
∀ \forall 对所有……有 s.t. such that ∼ \sim similar
∴ \therefore 所以 : such that ∈ \in 是……的元素
∵ \because 因为 iff 当且仅当 !x 有唯一的x

1.2 Functions 函数

输入到输出的映射 mapping:

  • input记作x,independent variable,自变量
  • output记作y,dependent variable,因变量

mapping 映射:

  • 一对一
  • 多对一
  • 一对多(不是函数)

函数的定义:每个x映射到唯一的一个y

inverse function 逆函数

  • 一对一映射的函数有反函数
  • 多对一映射的函数没有反函数,限制自变量的值域,变成一对一映射

函数 y = 2 x 2 − 1 y = 2x^2 - 1 y=2x21的逆函数(限制x的取值范围为 x ≥ 0 x \ge 0 x0)为
y = x + 1 2 y = \sqrt{\frac{x+1}{2}} y=2x+1

f ( f − 1 ( x ) ) = x f(f^{-1}(x)) = x f(f1(x))=x
f − 1 ( f ( x ) ) = x f^{-1}(f(x)) = x f1(f(x))=x

even function偶函数和 odd function 奇函数

偶函数

  • f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x)
  • 沿y轴对称

奇函数

  • f ( − x ) = f ( − x ) f(-x) = f(-x) f(x)=f(x)
  • 中心对称(沿原点旋转180°)

大部分函数不是偶函数或者奇函数,但是可以表达为奇函数和偶函数之和

1.2.1 Explicit/Implicit Representation 显示/隐式表示

显示表示 y = 2 x 2 + 4 x − 16 = 0 y = 2x^2 + 4x - 16 = 0 y=2x2+4x16=0
隐式表示 f ( x , y ) = 0 f(x,y) = 0 f(x,y)=0

1.2.2 Types of function

Polynomials 多项式

f ( x ) = ∑ k = 0 n a k x k ,   其 中 a 0 , a 1 , . . . , a n 是 常 数 f(x) = \sum_{k=0}^{n} a_k x^k, \ 其中a_0, a_1, ..., a_n是常数 f(x)=k=0nakxk, a0,a1,...,an

  • K = 1称为线性项
  • K = 2称为二次项

二次多项式 a x 2 + b x + c = 0 ax^2 + bx + c = 0 ax2+bx+c=0 的解
x = − b ± b 2 − 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2ab±b24ac

三种情况:

  • b 2 − 4 a c > 0 → x 1 ≠ x 2 , 两 个 实 数 根 b^2 - 4ac > 0 \rightarrow x_1 \neq x_2,两个实数根 b24ac>0x1=x2
  • b 2 − 4 a c = 0 → x 1 = x 2 = − b 2 a 为 实 数 b^2 - 4ac = 0 \rightarrow x_1 = x_2 = - \frac{b}{2a} 为实数 b24ac=0x1=x2=2ab
  • b 2 − 4 a c < 0 → x 1 ≠ x 2 , 两 个 复 数 共 轭 根 b^2 - 4ac < 0 \rightarrow x_1 \neq x_2,两个复数共轭根 b24ac<0x1=x2
Modulus 模(绝对值)

f ( x ) = { x x>0 − x x<0 f(x)= \begin{cases} x& \text{x>0}\\ -x& \text{x<0} \end{cases} f(x)={xxx>0x<0

模函数是分段函数piecewise function

1.3 Limit 极限

研究逼近问题

lim ⁡ x → x 0 f ( x ) → l \lim_{x \to x_0} f(x) \rightarrow l xx0limf(x)l

同时从左边逼近和从右边逼近,应该相同逼近同一个值

普通极限

lim ⁡ x → ∞ x 2 + 2 x + 2 3 x 2 + 4 = lim ⁡ x → ∞ 1 + 2 x + 2 x 2 3 + 4 x 2 = 1 3 \begin{aligned} & \lim_{x \to \infty} \frac{x^2 + 2x + 2}{3x^2 + 4} \\ = & \lim_{x \to \infty} \frac{1 + \frac{2}{x} + \frac{2}{x^2}}{3 + \frac{4}{x^2}} \\ = & \frac{1}{3} \end{aligned} ==xlim3x2+4x2+2x+2xlim3+x241+x2+x2231

函数连续

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) xx0limf(x)=f(x0)

1.3.1 exponential and log functions 指数和对数函数

y = a x y = log ⁡ a x y = a^x \\ y = \log_a x y=axy=logax

以自然对数为底的指数函数和对数函数
y = e x y = l n   x y = l o g   x y = e^x \\ y = ln\ x \\ y = log\ x y=exy=ln xy=log x

e = lim ⁡ n → ∞ ( 1 + x n ) n e = \lim_{n \to \infty} (1 + \frac{x}{n})^n e=nlim(1+nx)n

正态分布的形式类似于 e − x 2 / 2 e^{-x^2 / 2} ex2/2

1.3.2 Trigonometric/Circular Functions 三角函数

sin 正弦函数

  • 奇函数 s i n ( − x ) = − s i n ( x ) sin(-x) = -sin(x) sin(x)=sin(x)
  • 周期函数 s i n ( x + 2 π ) = s i n ( x ) sin(x + 2 \pi) = sin(x) sin(x+2π)=sin(x)
  • s i n x = 0 ⇔ x = n π   ∀ n ∈ Z sinx = 0 \Leftrightarrow x = n \pi \ \forall n \in Z sinx=0x=nπ nZ
  • D o m ( s i n x ) = R Dom(sinx) = R Dom(sinx)=R and I m ( s i n x ) = [ − 1 , 1 ] Im(sinx) = [-1, 1] Im(sinx)=[1,1]

cos 余弦函数

  • 偶函数 c o s ( − x ) = c o s ( x ) cos(-x) = cos(x) cos(x)=cos(x)
  • 周期函数 c o s ( x + 2 π ) = c o s ( x ) cos(x + 2 \pi) = cos(x) cos(x+2π)=cos(x)
  • c o s = 0 ⇔ x = ( 2 n + 1 ) π 2   ∀ n ∈ Z cos= 0 \Leftrightarrow x = (2n + 1) \frac{\pi}{2} \ \forall n \in Z cos=0x=(2n+1)2π nZ
  • D o m ( c o s   x ) = R Dom(cos\ x) = R Dom(cos x)=R and I m ( c o s   x ) = [ − 1 , 1 ] Im(cos \ x) = [-1, 1] Im(cos x)=[1,1]

tan 正切函数

  • 偶函数 t a n ( − x ) = t a n ( x ) tan (-x) = tan (x) tan(x)=tan(x)
  • 周期函数 c o s ( x + π ) = c o s ( x ) cos(x + \pi) = cos(x) cos(x+π)=cos(x)
  • D o m ( t a n   x ) = { x : c o s   x ≠ 0 } = { x : x ≠ ( 2 n + 1 ) π 2 ;   ( n ∈ Z ) } = R − { x = ( 2 n + 1 ) π 2 ;   ( n ∈ Z ) } Dom(tan\ x) = \{x : cos \ x \neq 0\} = \{x : x \neq (2n + 1) \frac{\pi}{2}; \ (n \in Z) \} = R - \{x = (2n + 1) \frac{\pi}{2}; \ (n \in Z) \} Dom(tan x)={x:cos x=0}={x:x=(2n+1)2π; (nZ)}=R{x=(2n+1)2π; (nZ)}

三角函数关系式
c o s 2 x + s i n 2 x = 1 cos^2 x + sin^2 x = 1 \\ cos2x+sin2x=1

s i n ( x ± y ) = s i n x   c o s y ∓ c o s x   s i n y c o s ( x ± y ) = c o s x   c o s y ∓ s i n x   s i n y t a n ( x ± y ) = t a n x ± t a n y 1 ∓ t a n x   t a n y sin(x \pm y) = sinx \ cosy \mp cosx \ siny \\ cos(x \pm y) = cosx \ cosy \mp sinx \ siny \\ tan(x \pm y) = \frac{tanx \pm tany}{1 \mp tanx \ tany} \\ sin(x±y)=sinx cosycosx sinycos(x±y)=cosx cosysinx sinytan(x±y)=1tanx tanytanx±tany

s e c x = 1 c o s x c s c x = 1 s i n x c o t x = 1 t a n x secx = \frac {1} {cosx} \\ cscx = \frac {1} {sinx} \\ cotx = \frac {1} {tanx} \\ secx=cosx1cscx=sinx1cotx=tanx1

s i n − 1 x → a r c s i n ( x ) c o s − 1 x → a r c c o s ( x ) t a n − 1 x → a r c t a n ( x ) sin^{-1}x \rightarrow arcsin(x) \\ cos^{-1}x \rightarrow arccos(x) \\ tan^{-1}x \rightarrow arctan(x) \\ sin1xarcsin(x)cos1xarccos(x)tan1xarctan(x)

lim ⁡ x → 0 s i n x = 0 lim ⁡ x → 0 s i n x x = 1 lim ⁡ x → 0 ∣ x ∣ = 0 lim ⁡ x → 0 ∣ x ∣ x 的 左 右 极 限 分 别 为 − 1 和 1 , 因 此 没 有 极 限 \lim_{x \to 0} sinx = 0 \\ \lim_{x \to 0} \frac{sinx}{x} = 1 \\ \lim_{x \to 0} |x| = 0 \\ \lim_{x \to 0} \frac{|x|}{x} 的左右极限分别为-1和1,因此没有极限 \\ x0limsinx=0x0limxsinx=1x0limx=0x0limxx11

1.3.3 Hyperbolic Functions 双曲函数

s i n h   x = 1 2 ( e x − e − x ) sinh \ x = \frac{1}{2}(e^x-e^{-x}) sinh x=21(exex)

  • 奇函数
  • D o m ( s i n h   x ) = R Dom(sinh \ x) = R Dom(sinh x)=R and I m ( s i n h   x ) = R Im(sinh \ x) = R Im(sinh x)=R

c o s h   x = 1 2 ( e x + e − x ) cosh \ x = \frac{1}{2}(e^x+e^{-x}) cosh x=21(ex+ex)

  • 偶函数
  • D o m ( c o s h   x ) = R Dom(cosh\ x) = R Dom(cosh x)=R and I m ( c o s h   x ) = [ 1 , ∞ ) Im(cosh\ x) = [1, \infty) Im(cosh x)=[1,)

t a n h   x = s i n h x c o s h x tanh \ x = \frac{sinhx}{coshx} tanh x=coshxsinhx

  • 奇函数
  • D o m ( c o s h   x ) = R Dom(cosh\ x) = R Dom(cosh x)=R and I m ( c o s h   x ) = ( 1 , 1 ) Im(cosh\ x) = (1, 1) Im(cosh x)=(1,1)

关系式

c o s h 2 x − s i n h 2 x = 1 s i n h ( x ± y ) = s i n h x   c o s h y ± s i n h x   c o s h y c o n s h ( x ± y ) = c o s h x   c o s h y ± s i n h x   s i n h y \begin{aligned} cosh^2 x - sinh^2 x & = 1\\ sinh(x \pm y) & = sinhx \ coshy \pm sinhx \ coshy \\ consh(x \pm y) & = coshx \ coshy \pm sinhx \ sinhy \\ \end{aligned} cosh2xsinh2xsinh(x±y)consh(x±y)=1=sinhx coshy±sinhx coshy=coshx coshy±sinhx sinhy

反函数

s i n h − 1 x = l n ∣ x + x 2 + 1 ∣ c o s h − 1 x = l n ∣ x + x 2 − 1 ∣ t a n h − 1 x = 1 2 l n ∣ 1 + x 1 − x ∣ \begin{aligned} sinh^{-1}x & = ln \left| x + \sqrt {x^2 + 1} \right| \\ cosh^{-1}x & = ln \left| x + \sqrt {x^2 - 1} \right| \\ tanh^{-1}x & = \frac{1}{2} ln \left| \frac{1+x}{1-x} \right| \\ \end{aligned} sinh1xcosh1xtanh1x=lnx+x2+1 =lnx+x21 =21ln1x1+x

1.4 Differentiation 微分

  • 莱布尼兹表示
    d f d x \frac{df}{dx} dxdf
  • 格朗日表示
    f ′ ( x ) f'(x) f(x)

定义

f ′ ( x ) = lim ⁡ δ x → 0 f ( x + δ x ) − f ( x ) δ x f'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} f(x)=δx0limδxf(x+δx)f(x)

上述定义式为前向微分

  • 反向微分
    f ′ ( x ) = lim ⁡ δ x → 0 f ( x ) − f ( x − δ x ) δ x f'(x) = \lim_{\delta x \to 0} \frac{f(x) - f(x - \delta x)}{\delta x} f(x)=δx0limδxf(x)f(xδx)
  • 中心微分
    f ′ ( x ) = lim ⁡ δ x → 0 f ( x + δ x ) − f ( x − δ x ) 2 δ x f'(x) = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x - \delta x)}{2 \delta x} f(x)=δx0lim2δxf(x+δx)f(xδx)

求微分的例子: f ( x ) = x 3 f(x) = x^3 f(x)=x3

f ′ ( x ) = lim ⁡ δ x → 0 f ( x + δ x ) − f ( x ) δ x = lim ⁡ δ x → 0 ( x + δ x ) 3 − x 3 δ x = lim ⁡ δ x → 0 ( x 3 + 3 x 2 δ x + 3 x δ x 2 + δ x 3 ) − x 3 δ x = lim ⁡ δ x → 0 ( 3 x 2 + 3 x δ x + δ x 2 ) = 3 x 2 \begin{aligned} f'(x) & = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} \\ & = \lim_{\delta x \to 0} \frac{(x + \delta x)^3 - x^3}{\delta x} \\ & = \lim_{\delta x \to 0} \frac{(x^3 + 3 x^2 \delta x + 3x \delta x ^ 2 + \delta x ^ 3) - x^3}{\delta x} \\ & = \lim_{\delta x \to 0} (3x^2 + 3x\delta x + \delta x ^2) \\ & = 3x^2 \\ \end{aligned} f(x)=δx0limδxf(x+δx)f(x)=δx0limδx(x+δx)3x3=δx0limδx(x3+3x2δx+3xδx2+δx3)x3=δx0lim(3x2+3xδx+δx2)=3x2

常用微分

d d x x n = n x n − 1 d d x e x = e x d d x e a x = a e a x d d x l o g x = 1 x d d x s i n x = c o s x d d x c o s x = − s i n x d d x t a n x = s e c 2 x \frac{d}{dx} x^n = nx^{n-1} \\ \frac{d}{dx} e^x = e^x \\ \frac{d}{dx} e^{ax} = ae^{ax} \\ \frac{d}{dx} logx = \frac{1}{x} \\ \frac{d}{dx} sinx = cosx \\ \frac{d}{dx} cosx = -sinx \\ \frac{d}{dx} tanx = sec^2 x \\ dxdxn=nxn1dxdex=exdxdeax=aeaxdxdlogx=x1dxdsinx=cosxdxdcosx=sinxdxdtanx=sec2x

Linearity 线性:

线性的定义

  • O p ( c × f ( x ) = c × O p ( f ( x ) ) Op(c \times f(x) = c \times Op(f(x)) Op(c×f(x)=c×Op(f(x))
  • O p ( f ( x ) ± g ( x ) ) = O p ( f ( x ) ) ± O p ( g ( x ) ) Op(f(x) \pm g(x)) = Op(f(x)) \pm Op(g(x)) Op(f(x)±g(x))=Op(f(x))±Op(g(x))

两个函数加权和的微分,等于两个函数微分的加权和
y = λ f ( x ) + μ g ( x ) , λ 和 μ 是 常 量 d y d x = d d x ( λ f ( x ) + μ g ( x ) ) = λ f ′ ( x ) + μ g ′ ( x ) y = \lambda f(x) + \mu g(x), \lambda和\mu是常量 \\ \frac{dy}{dx}=\frac{d}{dx} ( \lambda f(x) + \mu g(x))= \lambda f'(x) + \mu g'(x) y=λf(x)+μg(x),λμdxdy=dxd(λf(x)+μg(x))=λf(x)+μg(x)

1.4.1 Product Rule 乘法法则

对两个函数的乘积求导数

y = f ( x ) × g ( x ) ⟹ d y d x = f ′ ( x ) × g ( x ) + f ( x ) × g ′ ( x ) y = f(x) \times g(x) \Longrightarrow \frac{dy}{dx} = f'(x) \times g(x) + f(x) \times g'(x) y=f(x)×g(x)dxdy=f(x)×g(x)+f(x)×g(x)

1.4.2 Function of a Function Rule 函数的函数法则

求函数的函数的导数:chain rule 链式求导法则

y = f ( g ( x ) ) ⟹ d y d x = f ′ ( g ( x ) ) × g ′ ( x ) y = f(g(x)) \Longrightarrow \frac{dy}{dx} = f'(g(x)) \times g'(x) y=f(g(x))dxdy=f(g(x))×g(x)

d y d x = d y d u × d u d x \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} dxdy=dudy×dxdu

1.4.3 Quotient Rule 商数法则

可以用乘法法则推导

f ( x ) g ( x ) ⟹ d y d x = f ′ ( x ) × g ( x ) − f ( x ) × g ′ ( x ) ( ( g ( x ) ) 2 \frac{f(x)}{g(x)} \Longrightarrow \frac{dy}{dx} = \frac{f'(x) \times g(x) - f(x) \times g'(x)}{((g(x))^2} g(x)f(x)dxdy=((g(x))2f(x)×g(x)f(x)×g(x)

1.4.4 Implicit Differentiation 隐式微分

y = a x l n y = x l n   a 1 y d y d x = l n   a d y d x = a x l n   a y = a^x \\ lny = xln \ a \\ \frac{1}{y} \frac{dy}{dx} = ln \ a \\ \frac{dy}{dx} = a^x ln \ a y=axlny=xln ay1dxdy=ln adxdy=axln a

1.4.5 Higher Derivatives 高阶导数

  • n次多项式的 n+1 阶导数为0
  • 不是所有函数都处处可导

1.4.6 Leibniz Rule 莱布尼兹法则

乘法法则的高阶表示(二项式)
D n ( u v ) = ∑ i = 0 n C n i × D i u × D n − i v ,   C n r = n ! r ! ( ( n − r ) ! D^n(uv) = \sum_{i=0}^{n} C_n^i \times D^i u \times D^{n-i}v, \ C_n^r = \frac{n!}{r!((n-r)!} Dn(uv)=i=0nCni×Diu×Dniv, Cnr=r!((nr)!n!

1.4.7 Further Limits 高阶极限

L’Hospital’s rule

lim ⁡ x → a f ( x g ( x ) ≡ 0 0   o r   ∞ ∞ \lim_{x \to a} \frac{f(x}{g(x)} \equiv \frac{0}{0} \ or \ \frac{\infty}{\infty} xalimg(x)f(x00 or 
对极限的上下两部分同时求导,计算极限

lim ⁡ x → a f ( x g ( x ) = lim ⁡ x → a f ′ ( x g ′ ( x ) = … = lim ⁡ x → a f ( r ) ( x g ( r ) ( x ) \lim_{x \to a} \frac{f(x}{g(x)} = \lim_{x \to a} \frac{f'(x}{g'(x)} = … = \lim_{x \to a} \frac{f^{(r)}(x}{g^{(r)}(x)} xalimg(x)f(x=xalimg(x)f(x==xalimg(r)(x)f(r)(x

lim ⁡ x → 0 s i n x x = lim ⁡ x → 0 c o s x 1 = 1 \lim_{x \to 0} \frac{sinx}{x} = \lim_{x \to 0} \frac{cosx}{1} =1 \\ x0limxsinx=x0lim1cosx=1

1.5 Taylor Series 泰勒级数

多项式函数逼近原始函数,N次项的系数为N次导数

对于 f ( x ) = e x f(x)=e^x f(x)=ex, f ( r ) ( x ) = e x f^{(r)}(x) = e^x f(r)(x)=ex, f ( r ) ( 0 ) = 1 f^{(r)}(0) = 1 f(r)(0)=1

线性近似
截距项为1,斜率为1, e x ≈ 1 + x e^x \approx 1 + x ex1+x

二次近似
g ( x ) = a x 2 + b x + c g ′ ( x ) = 2 a x + b g ′ ′ ( x ) = 2 a g(x)=ax^2+bx+c \\ g'(x)=2ax+b \\ g''(x)=2a g(x)=ax2+bx+cg(x)=2ax+bg(x)=2a
g ( 0 ) = f ( 0 ) , g ′ ( 0 ) = f ′ ( 0 ) , g ′ ′ ( 0 ) = f ′ ′ ( 0 ) g(0)=f(0), g'(0)=f'(0), g''(0)=f''(0) g(0)=f(0),g(0)=f(0),g(0)=f(0)
得到 c = 1 , b = 1 , a = 1 2 c = 1, b = 1, a=\frac{1}{2} c=1,b=1,a=21
因此 e x ≈ 1 + x + 1 2 x 2 e^x \approx 1 + x + \frac{1}{2} x^2 ex1+x+21x2

三次近似: e x ≈ 1 + x + 1 2 x 2 + 1 6 x 3 e^x \approx 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 ex1+x+21x2+61x3

无穷展开 e x = ∑ n = 0 ∞ x n n ! e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} ex=n=0n!xn

泰勒级数: f ( x ) f(x) f(x) x 0 x_0 x0的泰勒展开
f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( x 0 )   ( x − x 0 ) n f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0) \ (x-x_0)^n f(x)=n=0n!1f(n)(x0) (xx0)n

常用展开
e x = ∑ n = 0 ∞ x n n ! l o g ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 x n n ! e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ log(1+x)= \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n!} \\ ex=n=0n!xnlog(1+x)=n=0(1)n1n!xn

泰勒定量

f ( x ) = ∑ k = 0 n − 1 1 k ! f ( k ) ( x 0 )   ( x − x 0 ) k + R n ( x ) 其 中 R n ( x ) = 1 n !   f ( n ) ( ξ )   ( x − x 0 ) n ξ 是 介 于 x 0 和 x 之 间 的 某 个 未 知 数 值 \begin{aligned} & f(x) = \sum_{k=0}^{n-1} \frac{1}{k!} f^{(k)}(x_0) \ (x-x_0)^k + R_n(x) \\ 其中 & R_n(x) = \frac{1}{n!} \ f^{(n)}(\xi) \ (x-x_0)^n \\ & \xi是介于x_0和x之间的某个未知数值 \end{aligned} f(x)=k=0n1k!1f(k)(x0) (xx0)k+Rn(x)Rn(x)=n!1 f(n)(ξ) (xx0)nξx0x

用泰勒展开式计算极限
lim ⁡ x → 0 s i n   x x ∼ lim ⁡ x → 0 ∑ i = 0 ∞ ( − 1 ) i x 2 i + 1 ( 2 i + 1 ) ! x ∼ lim ⁡ x → 0 ∑ i = 0 ∞ ( − 1 ) i x 2 i ( 2 i + 1 ) ! ∼ lim ⁡ x → 0 ( 1 − x 2 3 ! + x 4 5 ! + … ) = 1 \begin{aligned} \lim_{x \to 0} \frac{sin \ x}{x} & \sim \lim_{x \to 0} \frac{\sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!}}{x} \\ & \sim \lim_{x \to 0} \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i}}{(2i+1)!} \\ & \sim \lim_{x \to 0} (1 - \frac{x^2}{3!} + \frac{x^4}{5!} + …) \\ & = 1 \end{aligned} x0limxsin xx0limxi=0(1)i(2i+1)!x2i+1x0limi=0(1)i(2i+1)!x2ix0lim(13!x2+5!x4+)=1

1.5.1 The Binomial Expansion 二项式展开

二项式展开是 ( 1 + x ) n (1+x)^n (1+x)n的泰勒展开式

( 1 + x ) n = ∑ k = 0 n n ! k !   ( n − k ) ! x k ( 1 + a x ) n = ∑ k = 0 n n ! k !   ( n − k ) ! ( a x ) k ( p + a x ) n = ( p ( 1 + a p x ) ) n = p n ∑ k = 0 n n ! k !   ( n − k ) ! ( a p x ) k \begin{aligned} (1+x)^n & = \sum_{k=0}^n \frac{n!}{k! \ (n-k)!} x^k \\ (1+ax)^n & = \sum_{k=0}^n \frac{n!}{k! \ (n-k)!} (ax)^k \\ (p+ax)^n &= (p(1 + \frac{a}{p}x))^n\\ & = p^n \sum_{k=0}^n \frac{n!}{k! \ (n-k)!} (\frac{a}{p}x)^k\\ \end{aligned} (1+x)n(1+ax)n(p+ax)n=k=0nk! (nk)!n!xk=k=0nk! (nk)!n!(ax)k=(p(1+pax))n=pnk=0nk! (nk)!n!(pax)k

Pascal三角形: ( 1 + x ) n (1+x)^n (1+x)n,不同的n的二项式系数组成的三角形

1.6 Integration 积分

1.6.1 The Indefinite Integral 不定积分

f ( x ) f(x) f(x)的不定积分 ∫ f ( x ) d x \int f(x)dx f(x)dx

F ( x ) = ∫ f ( x ) d x d F ( x ) d x = f ( x ) F(x)=\int f(x)dx \\ \frac {dF(x)}{dx} = f(x) F(x)=f(x)dxdxdF(x)=f(x)

y = 2 x y=2x y=2x, d y d x = 2 \frac{dy}{dx}=2 dxdy=2, ∫ 2 d x = 2 x + C \int 2dx = 2x +C 2dx=2x+C, 注意常数项C对x的微分为0

不定积分的例子
∫ x n d x = 1 n + 1 x n + 1 + C ,   ( n ≠ − 1 ) ∫ 1 x d x = l n ( x ) + C ∫ e a x d x = 1 a e a x + C ∫ c o s ( a x ) d x = 1 a s i n ( a x ) + C ∫ s i n ( a x ) d x = − 1 a c o s ( a x ) + C \begin{aligned} \int x^n dx & = \frac{1}{n+1} x^{n+1} + C, \ (n \neq -1) \\ \int \frac{1}{x} dx & = ln(x) + C \\ \int e^{ax} dx & = \frac{1}{a} e^{ax} + C \\ \int cos(ax)dx & = \frac{1}{a}sin(ax) + C \\ \int sin(ax)dx & = -\frac{1}{a}cos(ax) + C \\ \end{aligned} xndxx1dxeaxdxcos(ax)dxsin(ax)dx=n+11xn+1+C, (n=1)=ln(x)+C=a1eax+C=a1sin(ax)+C=a1cos(ax)+C

Linearity 线性:积分是线性的
∫ ( α f ( x ) + β g ( x ) ) d x = α ∫ f ( x ) d x + β ∫ g ( x ) d x \int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx (αf(x)+βg(x))dx=αf(x)dx+βg(x)dx

∫ ( A x 2 + B x 4 ) d x = A ∫ x 2 d x + B ∫ x 3 d x = A 3 x 3 B 4 x 4 + C ∫ ( 3 e x + 2 x ) d x = 3 ∫ e x d x + 2 ∫ 1 x d x = 3 e x + 2 l n x + C \int (A x^2 + B x^4)dx = A \int x^2 dx + B \int x^3 dx = \frac{A}{3} x^3 \frac{B}{4} x^4 + C \\ \int (3 e^x + \frac{2}{x})dx = 3 \int e^x dx + 2 \int \frac{1}{x} dx = 3e^x + 2lnx + C (Ax2+Bx4)dx=Ax2dx+Bx3dx=3Ax34Bx4+C(3ex+x2)dx=3exdx+2x1dx=3ex+2lnx+C

1.6.2 The Definite Integral 定积分

f ( x ) f(x) f(x)的定积分 ∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx

例子:
∫ − 1 1 e x d x = e x ∣ − 1 1 = e − 1 e \int _{-1}^{1} e^x dx = e^x | _{-1}^{1} = e - \frac{1}{e} 11exdx=ex11=ee1

∫ a x f ( x ) d x \int_a^x f(x)dx axf(x)dx 这种表示法,容易造成混淆,应使用哑变量

∫ a c f ( x ) d x = ∫ a b f ( x ) d x + ∫ b c f ( x ) d x \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx acf(x)dx=abf(x)dx+bcf(x)dx, if a < b < c a < b < c a<b<c

∫ a c f ( x ) d x = − ∫ c a f ( x ) d x \int_a^c f(x)dx = - \int_c^a f(x)dx acf(x)dx=caf(x)dx

1.6.3 Integration by Substitution 代换积分法/换元法

∫ g ( f ( x ) ) f ′ ( x ) d x \int g(f(x))f'(x)dx g(f(x))f(x)dx

反向使用链式法则
z = f ( x ) z=f(x) z=f(x)
d z = f ′ ( x ) d x 可 得 ∫ g ( f ( x ) ) f ′ ( x ) d x = ∫ g ( z ) d z dz=f'(x)dx 可得\int g(f(x))f'(x)dx = \int g(z)dz dz=f(x)dxg(f(x))f(x)dx=g(z)dz

例子: ∫ 1 2 e x 2 2 x d x \int_1^2 e^{x^2}2xdx 12ex22xdx,
z = x 2 z=x^2 z=x2,
可得 ∫ 1 2 e x 2 2 x d x = ∫ 1 4 e z d z = e z ∣ 1 4 = e 4 − e 1 \int_1^2 e^{x^2}2xdx = \int_1^4 e^zdz = e^z | _1^4 = e^4-e^1 12ex22xdx=14ezdz=ez14=e4e1

重要例子 ∫ − ∞ ∞ e − x 2 d x \int_{-\infty}^{\infty} e^{-x^2}dx ex2dx
标准正态分布 Z ( x ) = 1 2 π e − x 2 2 Z(x) = \frac{1}{\sqrt{2 \pi}}e^{-\frac{x^2}{2}} Z(x)=2π 1e2x2
标准正态分布的CDF ∫ − ∞ ∞ Z ( x ) d x = 1 2 π ∫ − ∞ ∞ e − s 2 2 d s = 1 \int_{-\infty}^{\infty} Z(x)dx = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty} e^{-\frac{s^2}{2}}ds = 1 Z(x)dx=2π 1e2s2ds=1
x = s 2 x=\frac{s}{\sqrt{2}} x=2 s
可得 ∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^{\infty} e^{-x^2}dx = \sqrt{\pi} ex2dx=π

奇函数和偶函数的积分:
∫ − a a f ( x ) d x = ∫ − a 0 f ( x ) d x + ∫ 0 a f ( x ) d x = − ∫ 0 − a f ( x ) d x + ∫ 0 a f ( x ) d x = ∫ 0 a f ( − x ) d x + ∫ 0 a f ( x ) d x = { 2 ∫ 0 a f ( x ) d x f(x)是偶函数 0 f(x)是奇函数 \begin{aligned} \int_{-a}^{a} f(x)dx & = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx \\ & = -\int_{0}^{-a} f(x)dx + \int_{0}^{a} f(x)dx \\ & = \int_{0}^{a} f(-x)dx + \int_{0}^{a} f(x)dx \\ & = \begin{cases} 2 \int_{0}^{a} f(x)dx & \text{f(x)是偶函数}\\ 0 & \text{f(x)是奇函数} \end{cases} \end{aligned} aaf(x)dx=a0f(x)dx+0af(x)dx=0af(x)dx+0af(x)dx=0af(x)dx+0af(x)dx={20af(x)dx0f(x)是偶函数f(x)是奇函数

1.6.4 Integration by Parts 分部积分法

∫ u ′ v d x \int u'vdx uvdx

反向使用乘法法则
∫ u ′ v d x = u v − ∫ u v ′ d x + C \int u'vdx = uv - \int uv'dx + C uvdx=uvuvdx+C

分部积分法的使用场景:v是多项式函数,u是指数函数

例子: ∫ x e x d x \int xe^xdx xexdx
令: v = x , v ′ = 1 , u = e x , u ′ = e x v=x, v'=1, u=e^x, u'=e^x v=x,v=1,u=ex,u=ex
得到: ∫ x e x d x = u v − ∫ u v ′ d x + C = x e x − ∫ e x × 1 d x = e x ( x − 1 ) + C \int xe^xdx = uv - \int uv'dx + C = xe^x - \int e^x \times 1dx = e^x(x-1) + C xexdx=uvuvdx+C=xexex×1dx=ex(x1)+C

弱国多项式部分的次数大于1,反复使用分部积分法直到变为0次

经典问题: ∫ e x s i n x d x \int e^x sinx dx exsinxdx
v = e x , u ′ = s i n x , v ′ = e x , u = − c o s x v=e^x, u'=sinx, v'=e^x, u=-cosx v=ex,u=sinx,v=ex,u=cosx
得到: ∫ e x s i n x d x = − e x c o s x + ∫ e x c o s x d x \int e^x sinx dx = -e^xcosx + \int e^x cosx dx exsinxdx=excosx+excosxdx
v = e x , u ′ = c o s x , v ′ = e x , u = s i n x v=e^x, u'=cosx, v'=e^x, u=sinx v=ex,u=cosx,v=ex,u=sinx
得到: ∫ e x c o s x d x = e x s i n x − ∫ e x s i n x d x \int e^x cosx dx = e^xsinx - \int e^x sinx dx excosxdx=exsinxexsinxdx
将上两个等式相加,消去 ∫ e x c o s x d x \int e^x cosx dx excosxdx项得到
∫ e x s i n x d x = 1 2 e x ( s i n x − c o s x ) \int e^x sinx dx=\frac{1}{2}e^x(sinx-cosx) exsinxdx=21ex(sinxcosx)
∫ e x c o s x d x = 1 2 e x ( s i n x + c o s x ) \int e^x cosx dx=\frac{1}{2}e^x(sinx+cosx) excosxdx=21ex(sinx+cosx)

1.6.5 Reduction Formula 约化公式

∫ 0 ∞ e − t t n d t = I n \int_{0}^{\infty} e^{-t}t^ndt = I_n 0ettndt=In

用部分积分法逐次消去多项式项,得到 I n = n ! I 0 I_n = n!I_0 In=n!I0, 注意 e − t t n ∣ 0 ∞ = 0 e^{-t}t^n|_{0}^{\infty}=0 ettn0=0
I 0 = ∫ 0 ∞ e − t d t = 1 I_0 = \int_{0}^{\infty} e^{-t}dt = 1 I0=0etdt=1, I n = n ! I_n = n! In=n!
I n I_n In称为Gamma函数( Γ \Gamma Γ函数)

1.6.6 Other Results 其他法则

∫ f ′ ( x ) f ( x ) = l n ∣ f ( x ) ∣ + C \int \frac{f'(x)}{f(x)} = ln|f(x)| +C f(x)f(x)=lnf(x)+C
∫ 1 a + b x = 1 b l n ∣ a + b x ∣ + C \int \frac{1}{a+bx} = \frac{1}{b}ln|a+bx| + C a+bx1=b1lna+bx+C

Partial Fractions:部分分式分解
h ( x ) = f ( x ) g ( x ) = ∑ n = 0 N a n x n ∑ n = 0 M b n x n h(x) = \frac{f(x)}{g(x)} = \frac{\sum_{n=0}^{N} a_n x^n}{\sum_{n=0}^{M} b_n x^n} h(x)=g(x)f(x)=n=0Mbnxnn=0Nanxn

如果N

c ( x + a ) ( x + b ) ≡ A x + a + B x + b c = A ( x + b ) + B ( x + a ) \frac{c}{(x+a)(x+b)} \equiv \frac{A}{x+a} + \frac{B}{x+b} \\ c = A(x+b) + B(x+a) (x+a)(x+b)cx+aA+x+bBc=A(x+b)+B(x+a)
求解出A和B,得到部分分式分解

  • 重复的因式:
    c ( x + a ) 2 ( x + b ) 3 = A x + a + B ( x + a ) 2 + C x + b + D ( x + b ) 2 + E ( x + b ) 3 \frac{c}{(x+a)^2(x+b)^3} = \frac{A}{x+a} + \frac{B}{(x+a)^2} + \frac{C}{x+b} + \frac{D}{(x+b)^2} + \frac{E}{(x+b)^3} (x+a)2(x+b)3c=x+aA+(x+a)2B+x+bC+(x+b)2D+(x+b)3E

  • 未分解的高次项
    2 x + 1 ( x 2 + 3 x + 2 ) ( x − 1 ) = A x + B x 2 + 3 x + 2 + C x − 1 \frac{2x+1}{(x^2+3x+2)(x-1)} = \frac{Ax+B}{x^2+3x+2} + \frac{C}{x-1} (x2+3x+2)(x1)2x+1=x2+3x+2Ax+B+x1C

1.7 Complex Numbers 复数

复数的定义
z = x + i y z = x + iy z=x+iy where x , y ∈ R x, y \in R x,yR and i = − 1 i = \sqrt{-1} i=1
x x x称为实部real part, y y y称为虚部imaginary part

极坐标表示形式 z = r ( c o s θ + i   s i n θ ) z = r(cos\theta + i \ sin\theta) z=r(cosθ+i sinθ)
x = r   c o s θ ,   y = r   s i n θ ) ,   θ = a r c t a n y x x = r \ cos\theta, \ y =r \ sin\theta), \ \theta = arctan \frac{y}{x} x=r cosθ, y=r sinθ), θ=arctanxy

CQF笔记Primer数学基础_第1张图片
共轭conjugate
z = x + i y z=x+iy z=x+iy z = x − i y z=x-iy z=xiy互为共轭复数

1.7.1 Arithmetic 算术运算

  • 加减法: z 1 ± z 2 = ( x 1 ± x 2 ) + i ( y 1 ± y 2 ) ) z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)) z1±z2=(x1±x2)+i(y1±y2))
  • 乘法: z 1 × z 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + x 2 y 1 ) z_1 \times z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) z1×z2=(x1x2y1y2)+i(x1y2+x2y1)
  • 除法: z 1 z 2 = 1 x 2 2 + y 2 2 ( ( x 1 x 2 + y 1 y 2 ) + i ( x 1 y 2 − x 2 y 1 ) ) \frac{z_1}{z_2} = \frac{1}{x_2 ^ 2 + y_2 ^ 2} ((x_1 x_2 + y_1 y_2) + i(x_1 y_2 - x_2 y_1)) z2z1=x22+y221((x1x2+y1y2)+i(x1y2x2y1))
    除法相当于上下都乘以 z 2 z_2 z2的共轭复数 x 2 − i   y 2 x_2 - i \ y_2 x2i y2

1.7.2 Complex Conjugate Identities 共轭复数的性质

  1. 共轭的共轭 ( z ˉ ) ‾ = z \overline {(\bar z)} = z (zˉ)=z
  2. 加法的共轭 ( z 1 + z 2 ) ‾ = z 1 ‾ + z 2 ‾ \overline {(z_1 + z_2)} = \overline {z_1} + \overline {z_2} (z1+z2)=z1+z2
  3. 乘积的共轭 ( z 1 × z 2 ) ‾ = z 1 ‾ × z 2 ‾ \overline {(z_1 \times z_2)} = \overline {z_1} \times \overline {z_2} (z1×z2)=z1×z2
  4. 共轭相加 z + z ˉ = 2 x = 2 R e   z R e   z = z + z ˉ 2 z + \bar z = 2x = 2 Re \ z \\ Re \ z = \frac{z + \bar z}{2} z+zˉ=2x=2Re zRe z=2z+zˉ
  5. 共轭相减 z − z ˉ = 2 i y = 2 i I m   z I m   z = z − z ˉ 2 i z - \bar z = 2iy = 2i Im \ z \\ Im \ z = \frac{z - \bar z}{2i} zzˉ=2iy=2iIm zIm z=2izzˉ
  6. 共轭相乘 z × z ˉ = ( x + i y ) ( x − i y ) = ∣ z ∣ 2 z \times \bar z = (x + iy)(x - iy) = |z|^2 z×zˉ=(x+iy)(xiy)=z2

1.7.3 Polar Form 极坐标形式

z = r ( c o s θ + i   s i n θ ) = r e i θ e i θ = c o s θ + i   s i n θ z = r(cos \theta + i \ sin\theta) = re^{i \theta} \\ e^{i \theta} = cos \theta + i \ sin\theta z=r(cosθ+i sinθ)=reiθeiθ=cosθ+i sinθ

极坐标形式的乘除法非常简便

Euler’s Formula 欧拉公式

可以通过泰勒级数证明 e i θ = c o s θ + i   s i n θ e^{i \theta} = cos \theta + i \ sin\theta eiθ=cosθ+i sinθ,关键点在于 i 2 = − 1 i^2=-1 i2=1

泰勒展开式
e x = ∑ n = 0 ∞ x n n ! s i n   x = ∑ n = 0 ∞ ( − 1 ) n x ( 2 n + 1 ) ( 2 n + 1 ) ! c o s   x = ∑ n = 0 ∞ ( − 1 ) n x ( 2 n ) ( 2 n ) ! \begin{aligned} e^x & = \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ sin \ x & = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!} \\ cos \ x & = \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!} \\ \end{aligned} exsin xcos x=n=0n!xn=n=0(1)n(2n+1)!x(2n+1)=n=0(1)n(2n)!x(2n)

欧拉公式的证明
e i θ = ∑ n = 0 ∞ ( i θ ) n n ! = ∑ n = 0 ∞ ( i θ ) ( 2 n ) ( 2 n ) ! + ∑ n = 0 ∞ ( i θ ) ( 2 n + 1 ) ( 2 n + 1 ) ! = ∑ n = 0 ∞ i ( 2 n ) θ ( 2 n ) ( 2 n ) ! + ∑ n = 0 ∞ i × i ( 2 n ) θ ( 2 n + 1 ) ( 2 n + 1 ) ! = ∑ n = 0 ∞ ( − 1 ) n x ( 2 n ) ( 2 n ) ! + i ∑ n = 0 ∞ ( − 1 ) n x ( 2 n + 1 ) ( 2 n + 1 ) ! = c o s θ + i s i n θ \begin{aligned} e^{i \theta} & = \sum_{n=0}^{\infty} \frac{(i \theta)^n}{n!} \\ & = \sum_{n=0}^{\infty} \frac{(i \theta)^{(2n)}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(i \theta)^{(2n+1)}}{(2n+1)!} \\ & = \sum_{n=0}^{\infty} \frac{i^{(2n)} \theta^{(2n)}}{(2n)!} + \sum_{n=0}^{\infty} \frac{i \times i^{(2n)} \theta^{(2n+1)}}{(2n+1)!} \\ &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n)}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!} \\ &= cos \theta + i sin \theta \\ \end{aligned} eiθ=n=0n!(iθ)n=n=0(2n)!(iθ)(2n)+n=0(2n+1)!(iθ)(2n+1)=n=0(2n)!i(2n)θ(2n)+n=0(2n+1)!i×i(2n)θ(2n+1)=n=0(1)n(2n)!x(2n)+in=0(1)n(2n+1)!x(2n+1)=cosθ+isinθ

用欧拉公式计算 ∫ e x s i n x d x \int e^x sinx dx exsinxdx
∫ e x s i n x d x = ∫ e x I m e i x d x = ∫ I m e ( 1 + i ) x d x = I m 1 1 + i e ( 1 + i ) x d x = e x I m 1 − i 2 e i x d x = 1 2 e x I m ( 1 − i ) ( c o s x + i s i n x ) = 1 2 e x ( s i n x − c o s x ) \begin{aligned} \int e^x sinx dx & = \int e^x Im e^{ix} dx \\ & = \int Im e^{(1 + i)x} dx \\ & = Im \frac{1}{1+i}e^{(1 + i)x} dx \\ & = e^x Im \frac{1-i}{2}e^{ix} dx \\ & = \frac{1}{2} e^x Im (1 - i)(cosx+isinx) \\ & = \frac{1}{2} e^x (sinx - cosx) \end{aligned} exsinxdx=exImeixdx=Ime(1+i)xdx=Im1+i1e(1+i)xdx=exIm21ieixdx=21exIm(1i)(cosx+isinx)=21ex(sinxcosx)

同样的方法可以得到 ∫ e x s i n x d x = 1 2 e x ( s i n x + c o s x ) \int e^x sinx dx = \frac{1}{2} e^x (sinx + cosx) exsinxdx=21ex(sinx+cosx)

1.8 Functions of Several Variables: Multivariate Calculus 多变量函数:多变量微积分

偏微分 partial derivative
f ( x , y ) f(x, y) f(x,y)定义偏微分
∂ f ∂ x = l i m δ x → 0 f ( x + δ x , y ) − f ( x , y ) δ x \frac {\partial f}{\partial x} = lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x} xf=limδx0δxf(x+δx,y)f(x,y)
其中y保持不变(看作常量)
偏微分也记作 f x ,   f y f_x, \ f_y fx, fy

高阶偏微分
∂ 2 f ∂ x 2 = f x x = ∂ ∂ x ( ∂ f ∂ x ) ∂ 2 f ∂ y 2 = f y y = ∂ ∂ y ( ∂ f ∂ y ) ∂ 2 f ∂ x ∂ y = f x y = ∂ ∂ y ( ∂ f ∂ x ) ∂ 2 f ∂ y ∂ x = f y x = ∂ ∂ x ( ∂ f ∂ y ) \frac {\partial ^2 f}{\partial x^2} = f_{xx} = \frac {\partial}{\partial x} (\frac {\partial f}{\partial x}) \\ \frac {\partial ^2 f}{\partial y^2} = f_{yy} = \frac {\partial}{\partial y} (\frac {\partial f}{\partial y}) \\ \frac {\partial ^2 f}{\partial x \partial y} = f_{xy} = \frac {\partial}{\partial y} (\frac {\partial f}{\partial x}) \\ \frac {\partial ^2 f}{ \partial y \partial x} = f_{yx} = \frac {\partial}{\partial x} (\frac {\partial f}{\partial y}) \\ x22f=fxx=x(xf)y22f=fyy=y(yf)xy2f=fxy=y(xf)yx2f=fyx=x(yf)

1.8.1 The Chain Rule I 链式法则I

单变量:
f ( u ) ,   u = g ( x ) d f d x = d f d u × d u d x f(u), \ u=g(x) \\ \frac{df}{dx} = \frac{df}{du} \times \frac{du}{dx} f(u), u=g(x)dxdf=dudf×dxdu

多变量: 多个变量都是某个最终变量的函数
f ( x , y ) ,   x = x ( s ) ,   y = y ( s ) d f d s = ∂ f ∂ x × d x d s + ∂ f ∂ y × d y d s f(x, y), \ x=x(s), \ y=y(s) \\ \frac{df}{ds} = \frac{\partial f}{\partial x} \times \frac{dx}{ds} + \frac{\partial f}{\partial y} \times \frac{dy}{ds} f(x,y), x=x(s), y=y(s)dsdf=xf×dsdx+yf×dsdy

1.8.2 The Chain Rule II 链式法则II

多变量: 多个变量都是某一组最终变量的函数
f ( x , y ) ,   x = x ( u , v ) ,   y = y ( u , v ) d f d u = ∂ f ∂ x × ∂ x ∂ u + ∂ f ∂ y × ∂ y ∂ u f(x, y), \ x=x(u,v), \ y=y(u,v) \\ \frac{df}{du} = \frac{\partial f}{\partial x} \times \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \times \frac{\partial y}{\partial u} f(x,y), x=x(u,v), y=y(u,v)dudf=xf×ux+yf×uy

1.8.3 Taylor for two Variables 两变量泰勒展开

f ( x , t ) f(x,t) f(x,t) x = x 0 ,   t = t 0 x=x_0, \ t=t_0 x=x0, t=t0处展开

f ( x ) = f ( x 0 , t 0 ) + f x ( x 0 , t 0 ) ( x − x 0 ) + f t ( x 0 , t 0 ) ( t − t 0 ) + 1 2 { f x x ( x 0 , t 0 ) ( x − x 0 ) 2 + 2 f x t ( x 0 , t 0 ) ( x − x 0 ) ( t − t 0 ) + f t t ( x 0 , t 0 ) ( t − t 0 ) 2 } + … \begin{aligned} f(x) = & f(x_0, t_0) \\ & + f_x(x_0, t_0)(x - x_0) + f_t(x_0, t_0)(t - t_0) \\ & + \frac{1}{2} \left\{ \begin{aligned} & f_{xx}(x_0, t_0)(x - x_0)^2 \\ & + 2f_{xt}(x_0, t_0)(x - x_0)(t - t_0) \\ & + f_{tt}(x_0, t_0)(t - t_0)^2 \\ \end{aligned} \right\} \\ & + \dots \end{aligned} f(x)=f(x0,t0)+fx(x0,t0)(xx0)+ft(x0,t0)(tt0)+21fxx(x0,t0)(xx0)2+2fxt(x0,t0)(xx0)(tt0)+ftt(x0,t0)(tt0)2+

2 Linear Algebra 线性代数

2.1 Properties of Vectors 向量的性质

n维空间 R n R_n Rn
n维向量
v ⃗ = [ v 1 v 2 ⋮ v n ] ∈ R n \vec \boldsymbol v = \left[ \begin{matrix} v_1 \\ v_2 \\ \vdots \\ v_n \\ \end{matrix} \right] \in R_n v =

你可能感兴趣的:(CQF)