DeepXDE 科学机器学习库(薛定谔方程)

DeepXDE 科学机器学习库

DeepXDE 由 Lu Lu 在布朗大学 George Karniadakis 教授的指导下于 2018 年夏季至 2020 年夏季开发,并得到 PhILM 的支持。 DeepXDE 最初是在布朗大学的 Subversion 中自行托管的,名称为 SciCoNet(科学计算神经网络)。 2019 年 2 月 7 日,SciCoNet 从 Subversion 迁移到 GitHub,更名为 DeepXDE。

文章目录

  • DeepXDE 科学机器学习库
    • DeepXDE 特性
    • 数值算例
    • 课程视频及参考文献

DeepXDE 是一个用于科学机器学习的库。如果您需要一个深度学习库,请使用 DeepXDE

DeepXDE 特性

DeepXDE 已经实现了如上所示的许多算法,并支持许多特性:

  • 复杂的域几何图形,没有专制网格生成。原始几何形状是间隔、三角形、矩形、多边形、圆盘、长方体和球体。其他几何可以使用三个布尔运算构建为构造实体几何 (CSG):并集、差集和交集。
  • 多物理场,即(时间相关的)耦合偏微分方程。
  • 5 种类型的边界条件 (BC):Dirichlet、Neumann、Robin、周期性和一般 BC,可以在任意域或点集上定义。
  • 不同的神经网络,例如(堆叠/非堆叠)全连接神经网络、残差神经网络和(时空)多尺度傅里叶特征网络。
  • 6种抽样方法:均匀抽样、伪随机抽样、拉丁超立方抽样、Halton序列、Hammersley序列、Sobol序列。
  • 训练点可以在训练期间保持不变,也可以每隔一定的迭代重新采样一次。
  • 方便保存 训练期间的模型,并加载训练好的模型。
  • 使用 dropout 的不确定性量化。
  • 许多不同的(加权)损失、优化器、学习率计划、指标等回调,用于在训练期间监控模型的内部状态和统计信息,例如提前停止。
  • 使用户代码紧凑,与数学公式非常相似。
  • DeepXDE 的所有组件都是松耦合的,因此 DeepXDE 结构良好且高度可配置。
  • 可以轻松自定义 DeepXDE 以满足新的需求。

数值算例

问题设置

我们将求解由下式给出的非线性薛定谔方程
i h t + 1 2 h x x + ∣ h ∣ 2 h = 0 i h_{t}+\frac{1}{2} h_{x x}+|h|^{2} h=0 iht+21hxx+h2h=0
周期性边界条件为
x ∈ [ − 5 , 5 ] , t ∈ [ 0 , π / 2 ] h ( t , − 5 ) = h ( t , 5 ) h x ( t , − 5 ) = h x ( t , 5 ) \begin{aligned} &x \in[-5,5], \quad t \in[0, \pi / 2] \\ &h(t,-5)=h(t, 5) \\ &h_{x}(t,-5)=h_{x}(t, 5) \end{aligned} x[5,5],t[0,π/2]h(t,5)=h(t,5)hx(t,5)=hx(t,5)
初始条件为
h ( 0 , x ) = 2 sech ⁡ ( x ) h(0, x)=2 \operatorname{sech}(x) h(0,x)=2sech(x)
Deepxde 只使用实数,因此我们需要明确拆分复数 PDE 的实部和虚部。

代替单个残差
f = i h t + 1 2 h x x + ∣ h ∣ 2 h f=i h_{t}+\frac{1}{2} h_{x x}+|h|^{2} h f=iht+21hxx+h2h
我们得到两个(实值)残差
f R = u t + 1 2 v x x + ( u 2 + v 2 ) v f I = v t − 1 2 u x x − ( u 2 + v 2 ) u \begin{aligned} &f_{\mathcal{R}}=u_{t}+\frac{1}{2} v_{x x}+\left(u^{2}+v^{2}\right) v \\ &f_{\mathcal{I}}=v_{t}-\frac{1}{2} u_{x x}-\left(u^{2}+v^{2}\right) u \end{aligned} fR=ut+21vxx+(u2+v2)vfI=vt21uxx(u2+v2)u
其中 u ( x , t ) u(x, t) u(x,t) v ( x , t ) v(x, t) v(x,t) 分别表示 h h h 的实部和虚部。

import numpy as np

import deepxde as dde

# 用于绘图
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
x_lower = -5
x_upper = 5
t_lower = 0
t_upper = np.pi / 2

# 创建 2D 域(用于绘图和输入)
x = np.linspace(x_lower, x_upper, 256)
t = np.linspace(t_lower, t_upper, 201)
X, T = np.meshgrid(x, t)

# 整个域变平
X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None]))

# 空间和时间域/几何(对于 deepxde 模型)
space_domain = dde.geometry.Interval(x_lower, x_upper)
time_domain = dde.geometry.TimeDomain(t_lower, t_upper)
geomtime = dde.geometry.GeometryXTime(space_domain, time_domain)
# 损失的“物理信息”部分


def pde(x, y):
    """
    INPUTS:
        x: x[:,0] 是 x 坐标
           x[:,1] 是 t 坐标
        y: 网络输出,在这种情况下:
            y[:,0] 是 u(x,t) 实部
            y[:,1] 是 v(x,t) 虚部
    OUTPUT:
        标准形式的 pde,即必须为零的东西
    """

    u = y[:, 0:1]
    v = y[:, 1:2]

    # 在'jacobian'中,i 是输出分量,j 是输入分量
    u_t = dde.grad.jacobian(y, x, i=0, j=1)
    v_t = dde.grad.jacobian(y, x, i=1, j=1)

    u_x = dde.grad.jacobian(y, x, i=0, j=0)
    v_x = dde.grad.jacobian(y, x, i=1, j=0)

    # 在“hessian”中,i 和 j 都是输入分量。 (Hessian 原则上可以是 d^2y/dxdt、d^2y/d^2x 等)
    # 输出组件由“组件”选择
    u_xx = dde.grad.hessian(y, x, component=0, i=0, j=0)
    v_xx = dde.grad.hessian(y, x, component=1, i=0, j=0)

    f_u = u_t + 0.5 * v_xx + (u ** 2 + v ** 2) * v
    f_v = v_t - 0.5 * u_xx - (u ** 2 + v ** 2) * u

    return [f_u, f_v]
# 边界条件和初始条件

# 周期性边界条件
bc_u_0 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=0, component=0
)
bc_u_1 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=1, component=0
)
bc_v_0 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=0, component=1
)
bc_v_1 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=1, component=1
)

# 初始条件
def init_cond_u(x):
    "2 sech(x)"
    return 2 / np.cosh(x[:, 0:1])


def init_cond_v(x):
    return 0


ic_u = dde.IC(geomtime, init_cond_u, lambda _, on_initial: on_initial, component=0)
ic_v = dde.IC(geomtime, init_cond_v, lambda _, on_initial: on_initial, component=1)
data = dde.data.TimePDE(
    geomtime,
    pde,
    [bc_u_0, bc_u_1, bc_v_0, bc_v_1, ic_u, ic_v],
    num_domain=10000,
    num_boundary=20,
    num_initial=200,
    train_distribution="pseudo",
)

# 网络架构
net = dde.maps.FNN([2] + [100] * 4 + [2], "tanh", "Glorot normal")

model = dde.Model(data, net)

Adam 优化.


# 强烈建议使用 GPU 加速系统.

model.compile("adam", lr=1e-3, loss="MSE")
model.train(epochs=1000, display_every=100)
Compiling model...
Building feed-forward neural network...
'build' took 0.076881 s



/usr/local/lib/python3.9/site-packages/deepxde/nn/tensorflow_compat_v1/fnn.py:103: UserWarning: `tf.layers.dense` is deprecated and will be removed in a future version. Please use `tf.keras.layers.Dense` instead.
  return tf.layers.dense(
/usr/local/lib/python3.9/site-packages/keras/legacy_tf_layers/core.py:261: UserWarning: `layer.apply` is deprecated and will be removed in a future version. Please use `layer.__call__` method instead.
  return layer.apply(inputs)
2022-02-13 12:11:31.872944: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.


'compile' took 0.775926 s

Initializing variables...
Training model...

Step      Train loss                                                                          Test loss                                                                           Test metric
0         [7.09e-03, 4.63e-02, 2.41e+00, 1.27e-04, 2.85e-03, 2.84e-04, 1.15e+00, 9.62e-04]    [7.09e-03, 4.63e-02, 2.41e+00, 1.27e-04, 2.85e-03, 2.84e-04, 1.15e+00, 9.62e-04]    []  
100       [9.38e-03, 1.96e-02, 1.04e-05, 2.25e-03, 1.65e-05, 1.21e-03, 1.06e-01, 1.02e-03]    [9.38e-03, 1.96e-02, 1.04e-05, 2.25e-03, 1.65e-05, 1.21e-03, 1.06e-01, 1.02e-03]    []  
200       [1.57e-02, 1.78e-02, 1.47e-05, 9.31e-04, 6.18e-04, 1.61e-04, 4.71e-02, 1.02e-03]    [1.57e-02, 1.78e-02, 1.47e-05, 9.31e-04, 6.18e-04, 1.61e-04, 4.71e-02, 1.02e-03]    []  
300       [1.62e-02, 1.43e-02, 7.50e-06, 7.65e-04, 5.41e-05, 4.26e-05, 3.74e-02, 1.32e-03]    [1.62e-02, 1.43e-02, 7.50e-06, 7.65e-04, 5.41e-05, 4.26e-05, 3.74e-02, 1.32e-03]    []  
400       [1.60e-02, 1.39e-02, 5.21e-06, 8.29e-04, 1.79e-05, 3.45e-05, 3.28e-02, 1.64e-03]    [1.60e-02, 1.39e-02, 5.21e-06, 8.29e-04, 1.79e-05, 3.45e-05, 3.28e-02, 1.64e-03]    []  
500       [1.54e-02, 1.39e-02, 3.18e-06, 7.63e-04, 1.47e-05, 4.23e-05, 2.94e-02, 1.88e-03]    [1.54e-02, 1.39e-02, 3.18e-06, 7.63e-04, 1.47e-05, 4.23e-05, 2.94e-02, 1.88e-03]    []  
600       [1.51e-02, 1.38e-02, 2.07e-05, 6.36e-04, 2.54e-03, 4.45e-05, 2.73e-02, 2.29e-03]    [1.51e-02, 1.38e-02, 2.07e-05, 6.36e-04, 2.54e-03, 4.45e-05, 2.73e-02, 2.29e-03]    []  
700       [1.44e-02, 1.37e-02, 4.71e-06, 5.26e-04, 2.15e-06, 2.84e-05, 2.59e-02, 1.82e-03]    [1.44e-02, 1.37e-02, 4.71e-06, 5.26e-04, 2.15e-06, 2.84e-05, 2.59e-02, 1.82e-03]    []  
800       [1.37e-02, 1.35e-02, 5.04e-06, 4.37e-04, 3.51e-06, 1.36e-05, 2.47e-02, 1.66e-03]    [1.37e-02, 1.35e-02, 5.04e-06, 4.37e-04, 3.51e-06, 1.36e-05, 2.47e-02, 1.66e-03]    []  
900       [1.31e-02, 1.34e-02, 4.33e-06, 3.77e-04, 7.51e-06, 5.86e-06, 2.35e-02, 1.49e-03]    [1.31e-02, 1.34e-02, 4.33e-06, 3.77e-04, 7.51e-06, 5.86e-06, 2.35e-02, 1.49e-03]    []  
1000      [1.25e-02, 1.32e-02, 2.72e-06, 3.28e-04, 5.27e-06, 4.65e-06, 2.24e-02, 1.31e-03]    [1.25e-02, 1.32e-02, 2.72e-06, 3.28e-04, 5.27e-06, 4.65e-06, 2.24e-02, 1.31e-03]    []  

Best model at step 1000:
  train loss: 4.97e-02
  test loss: 4.97e-02
  test metric: []

'train' took 188.992807 s






(,
 )

L-BFGS 优化.

dde.optimizers.config.set_LBFGS_options(
    maxcor=50,
    ftol=1.0 * np.finfo(float).eps,
    gtol=1e-08,
    maxiter=1000,
    maxfun=1000,
    maxls=50,
)
model.compile("L-BFGS")
model.train()
Compiling model...
'compile' took 0.554160 s

Training model...

Step      Train loss                                                                          Test loss                                                                           Test metric
1000      [1.25e-02, 1.32e-02, 2.72e-06, 3.28e-04, 5.27e-06, 4.65e-06, 2.24e-02, 1.31e-03]    [1.25e-02, 1.32e-02, 2.72e-06, 3.28e-04, 5.27e-06, 4.65e-06, 2.24e-02, 1.31e-03]    []  
2000      [7.03e-04, 7.62e-04, 6.76e-06, 1.33e-05, 2.88e-07, 8.49e-06, 4.01e-04, 3.86e-05]                                                                                            
INFO:tensorflow:Optimization terminated with:
  Message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT
  Objective function value: 0.001928
  Number of iterations: 945
  Number of functions evaluations: 1001
2001      [7.18e-04, 7.43e-04, 6.27e-06, 1.23e-05, 2.94e-07, 8.89e-06, 4.01e-04, 3.82e-05]    [7.18e-04, 7.43e-04, 6.27e-06, 1.23e-05, 2.94e-07, 8.89e-06, 4.01e-04, 3.82e-05]    []  

Best model at step 2001:
  train loss: 1.93e-03
  test loss: 1.93e-03
  test metric: []

'train' took 179.449384 s






(,
 )
# 做预测
prediction = model.predict(X_star, operator=None)

u = griddata(X_star, prediction[:, 0], (X, T), method="cubic")
v = griddata(X_star, prediction[:, 1], (X, T), method="cubic")

h = np.sqrt(u ** 2 + v ** 2)


# 绘制预测
fig, ax = plt.subplots(3)

ax[0].set_title("Results")
ax[0].set_ylabel("Real part")
ax[0].imshow(
    u.T,
    interpolation="nearest",
    cmap="viridis",
    extent=[t_lower, t_upper, x_lower, x_upper],
    origin="lower",
    aspect="auto",
)
ax[1].set_ylabel("Imaginary part")
ax[1].imshow(
    v.T,
    interpolation="nearest",
    cmap="viridis",
    extent=[t_lower, t_upper, x_lower, x_upper],
    origin="lower",
    aspect="auto",
)
ax[2].set_ylabel("Amplitude")
ax[2].imshow(
    h.T,
    interpolation="nearest",
    cmap="viridis",
    extent=[t_lower, t_upper, x_lower, x_upper],
    origin="lower",
    aspect="auto",
)

plt.show()

DeepXDE 科学机器学习库(薛定谔方程)_第1张图片


课程视频及参考文献

课程视频下载 密码:safh

Physics Informed Deep Learning (Part I)

Physics Informed Deep Learning (Part II)

DeepXDE- A Deep Learning Library for Solving Differential Equations

文献解读-Physics Informed Deep Learning(PINN)

文献解读-物理信息深度学习(PINN)

课程介绍及视频资源来自国家天元数学东南中心官网,若有侵权,请联系作者删除

作者邮箱:[email protected]

你可能感兴趣的:(SciML,薛定谔方程)