- 人工智能中的线性代数与矩阵论学习秘诀之著名教材
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
线性代数是大学数学中非常核心的基础课程,教材繁多,国内外有许多经典的教材。国内比较有名且使用较为广泛的线性代数中文教材见书籍8。书籍8线性代数中文教材推荐:(a)简明线性代数(丘维声);(b)线性代数(居于马);(c)线性代数(李尚志);(d)线性代数(李炯生等);(e)线性代数五讲(龚昇);(f)线性代数的几何意义(任广千等)北京大学的丘维声教授编写的《简明线性代数》[17]是北京市高等教育精品
- 人工智能中的线性代数与矩阵论学习秘诀之学习路线
audyxiao001
人工智能怎么学线性代数人工智能矩阵
线性代数和矩阵论的学习对于打好AI的理论基础非常重要,要加以重视和认真学习。下面给出学习的路线仅供参考,个人可以根据自己的知识储备、数学能力以及研究方向加以调整。具体的学习路线见图3-8。在初级入门阶段,主要打好线性代数的理论基础,建议中文和英文教材各选一本进行学习,即从初级入门教材1~4和5~8中各选一本进行学习。在中级提高阶段,主要弄清楚线性代数理论的本质和物理含义,特别是线性代数的几何意义,
- Schur引理
patrickpdx
矩阵论矩阵
这是Schur引理的引理Schur引理的复矩阵版本和实矩阵版本摘自《矩阵论教程》第2版,张绍飞,p49
- 矩阵函数
patrickpdx
矩阵论
文章目录矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数通过Jordan标准形求矩阵函数待定系数法求矩阵函数矩阵函数的定义一些常见的矩阵函数矩阵函数的性质通过相似对角化求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大学出版社,2000.p158通过Jordan标准形求矩阵函数本段摘自程云鹏.矩阵论(第二版)[M]//矩阵论(第二版).西北工业大
- 矩阵分解——QR分解
patrickpdx
矩阵论
文章目录满秩方阵的QR分解矩阵QR分解例题列满秩矩阵的QR分解满秩方阵的QR分解可以看到,该证明过程是构造性的,即通过构造出了QQQ,RRR的方式,证明了QR分解的存在性,不仅证明了存在性,还为我们提供了QR分解中QQQ和RRR的求解方法矩阵QR分解例题摘自《矩阵论》程云鹏,西安交通大学,1999年6月第2版,p203列满秩矩阵的QR分解摘自《矩阵论教程》第二版张绍飞2.1节
- 【线性代数与矩阵论】矩阵的酉相似
你哥同学
线性代数与矩阵论线性代数矩阵
矩阵的酉相似(合同变换)2023年11月7日#algebra文章目录矩阵的酉相似(合同变换)1.酉矩阵2.酉相似3.Schur分解定理4.正规矩阵5.酉相似对角化6.Hermit矩阵,反Hermit矩阵及酉矩阵的特性7.Hermit矩阵的正定性下链1.酉矩阵设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,若A{A}A满足AHA=AAH=IA^\mathrmHA=AA^
- 深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
搬砖班班长
深度学习人工智能学习经验分享
经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。下面给出几个链接,可以用于平时充电学习。知乎上的:机器学习与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
- 【线性代数与矩阵论】范数理论
你哥同学
线性代数与矩阵论线性代数矩阵概率论范数
范数理论2023年11月16日文章目录范数理论1.向量的范数2.常用向量范数3.向量范数的等价性4.矩阵的范数5.常用的矩阵范数6.矩阵范数与向量范数的相容性7.矩阵范数诱导的向量范数8.由向量范数诱导的矩阵范数9.矩阵范数的酉不变性10.矩阵范数的等价性11.长方阵的范数下链1.向量的范数向量的长度也称为向量的二范数[!quote]-长度的定理设x,y,z∈Cn , λ∈C{x,y,z\in
- 【线性代数与矩阵论】矩阵的谱半径与条件数
你哥同学
线性代数与矩阵论线性代数矩阵概率论条件数
矩阵的谱半径与条件数2023年11月18日文章目录矩阵的谱半径与条件数1.矩阵的谱半径2.谱半径与范数的关系3.矩阵的条件数下链1.矩阵的谱半径定义设A∈Cn×n{A\in\mathbbC^{n\timesn}}A∈Cn×n,λ1,λ2,⋯ ,λn{\lambda_1,\lambda_2,\cdots,\lambda_n}λ1,λ2,⋯,λn是A的特征值,则称ρ(A)=max1≤i≤n∣λi∣\
- SVD分解原理及基于SVD分解的图像压缩和去噪
nwsuaf_huasir
信号处理
SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。SVD分解的公式如下,其中U和V都为正交矩阵,中间的为特征值构成的对角矩阵,相对于正交对角分解,SVD分解的适应性更强,应为A不必是方阵,下面是SVD分解的公式。用SVD做图像压
- 个人猜测:关于《矩阵论》中的QR分解为什么用Q来表示正交矩阵(orthogonal matrix )
SleepingBug
矩阵线性代数
为什么QR分解用Q来表示正交矩阵(orthogonalmatrix)?搜过Google,问过ChatGPT,什么说是约定俗成,什么说是历史原因,都没有一个合理的解释。都没有准确的答案,下面这两个链接还有人追溯最开始用QR写法的文章,但还是没有结论1)linearalgebra-Whyareorthogonalmatricessooftendenoted$Q$?-MathOverflow2)line
- 只不过孤岛罢了:我的2023年总结
染念
折腾心得年终总结人工智能深度学习性能优化c++
2023已悄然过去,还记得跨年夜那天,我突然接到一星期要期末考的消息,我的内心是多么奔溃,先不说一天一门强度如此之高,重要的是矩阵论,工程优化等等科目,还要速成,于是麻木得预习一日又一日,终于在10号结束了研一上的所有考试。剩下的就靠老师捞菜菜了。好了,吐槽的完了,现在正式地总结我的23年。文章目录身份上知识上比赛上思想上创作内容上感情上项目上数码产品上总结身份上这年惊喜的是1月份,我在蓝桥云课获
- 加密解密工具 之 希尔密码
一个工具箱
希尔密码(HillCipher),是运用基本矩阵论原理的替换密码,每个字母当作26进制数字:A=0,B=1,C=2...一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果mod26。用作加密的矩阵(即密匙)必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。简介希尔密码是运用基本矩阵论原理的替换密码,由LesterS.Hill在1929年发明。每个字母当作26进制数字
- 利用矩阵特征值解决微分方程【1】
唠嗑!
信息论安全矩阵网络安全
目录一.特征值介绍二.单变量常微分方程三.利用矩阵解决微分方程问题四.小结4.1矩阵论4.2特征值与特征向量内涵4.3应用一.特征值介绍线性代数有两大基础问题:如果A为对角阵的话,那么问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。在已知解的情况下,可以利用矩阵行列式解决问题。根据Cramer定则:将以下矩阵的行列式看成一个多项式:该多项式的根即为特征值。当矩阵维度较高时,这个方
- 《矩阵分析》笔记
热水过敏
矩阵笔记线性代数
来源:【《矩阵分析》期末速成主讲人:苑长(5小时冲上90+)】https://www.bilibili.com/video/BV1A24y1p76q?vd_source=c4e1c57e5b6ca4824f87e74170ffa64d这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没时间听太长的课,就看了b站上这个视频,笔记几乎就是原视频copy,和教材相比有一些没提到(如奇异值分解、House
- [矩阵论]哈尔滨工业大学全72讲
东北霸主劳德利
全科笔记矩阵python机器学习
主页有博主其他上万字精品笔记,例如数值分析,电磁学.01哈尔滨工业大学严质彬教授的矩阵分析课程,讲解了矩阵分析的基础知识和重要性。教材没有特别指定,建议购买北京理工大学的水荣昌的《矩阵分析》。课程假定学生已经学过高等数学中的线性代数,旨在为控制学科打下基础。讲授了线性空间和线性映射的概念,介绍了集合的笛卡尔积和映射的记号。00:00矩阵分析课程介绍:这个视频是关于矩阵分析课程的介绍。讲师强调了矩阵
- 【线性代数与矩阵论】Jordan型矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习线性控制系统Jordan型矩阵
Jordan型矩阵2023年11月3日#algebra文章目录Jordan型矩阵1.代数重数与几何重数2.Jordan块与Jordan标准型2.1最小多项式与Jordan标准型2.2两类重要矩阵3.矩阵的Jordan分解3.1Jordan分解的应用下链1.代数重数与几何重数在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被
- 实对称矩阵的特征值求法_正交矩阵学习小结
weixin_39548193
实对称矩阵的特征值求法已知协方差矩阵求特征值矩阵转置相关公式
整理一下矩阵论学习中的相关概念。从正交矩阵开始正交矩阵定义1称n阶方阵A是正交矩阵,若正交矩阵有几个重要性质:A的逆等于A的转置,即A的行列式为±1,即A的行(列)向量组为n维单位正交向量组上述3个性质可以看做是正交矩阵的判定准则,我们可以通过上述准则简单地判断一个矩阵是否是正交矩阵。下面,我们将从线性变换的角度,来看正交矩阵还有哪些独特的性质。首先给出正交变换的定义:定义2欧氏空间V的线性变换T
- 机器学习算法工程师
prolrj2015
算法
职位要求1、扎实的数学功底和分析技能,精通计算机视觉中的数学方法;高等数学(微积分)、线性代数(矩阵论)、随机过程、概率论、摄影几何、模型估计、数理统计、张量代数、数据挖掘、数值分析等;2、具备模式识别、图像处理、机器视觉、信号处理和人工智能等基础知识;对图像特征、机器学习有深刻认识与理解;3、精通图像处理基本概念和常用算法包括图像预处理算法和高级处理算法;常见的图像处理算法,包括增强、分割、复原
- 【矩阵论】Chapter 4—特征值和特征向量知识点总结复习
unique_pursuit
课程矩阵线性代数
文章目录1特征值和特征向量2对角化3Schur定理和正规矩阵1特征值和特征向量定义设σ\sigmaσ为数域FFF上线性空间VVV上的一个线性变换,一个非零向量v∈Vv\inVv∈V,如果存在一个λ∈F\lambda\inFλ∈F使得σ(v)=λv\sigma(v)=\lambdavσ(v)=λv,则λ\lambdaλ称为σ\sigmaσ的特征值。σ\sigmaσ的特征值的集合称为σ\sigmaσ的
- 【矩阵论】Chapter 2—内积空间知识点总结复习
unique_pursuit
课程矩阵线性代数机器学习
文章目录内积空间1内积空间2标准正交向量集3Gram-Schmidt正交化方法4正交子空间5最小二乘问题6正交矩阵和酉矩阵内积空间1内积空间内积空间定义设VVV是在数域FFF上的向量空间,则VVV到FFF的一个代数运算记为(α,β)(\alpha,\beta)(α,β)。如果(α,β)(\alpha,\beta)(α,β)满足以下条件:(α,β)=(β,α)‾(\alpha,\beta)=\ove
- 雷达算法相关技术栈
奔袭的算法工程师
算法
作为一名雷达算法工程师,总结一下相关的技术栈。一、数学基础信号与系统、数字信号处理、概率论与数理统计、随机信号分析、随机过程、矩阵论二、雷达算法1.雷达基本原理(测距、测速、测角)2.波形设计对雷达测量的影响3.距离模糊、速度模糊、角度模糊产生的原因和解决办法4.调频连续波的测距、测速、测角原理(多维FFT累加)5.波束形成和滤波器设计,以及对于波束的影响6.检测门限、概率与奈-皮尔逊准则7.不同
- 《矩阵论》学习笔记(一):第一章 线性空间与线性变换
熊宝宝爱学习
数学线性代数矩阵
《矩阵论》学习笔记:第一章线性空间与线性变换文章目录《矩阵论》学习笔记:第一章线性空间与线性变换一、线性空间1.1线性空间1.2线性变换及其矩阵1.2.1线性变换及其应用1.2.2线性变换的矩阵表示1.2.3特征值和特征向量1.2.4对角矩阵1.2.6jordan标准型1.3两个特殊的线性空间1.3.1欧氏空间1.3.2酉空间二、线性变换及其性质第一章线性空间与线性变换一.线性空间二.线性变换及其
- 《矩阵理论》笔记 1 — 线性空间与线性变换
frozendure
矩阵理论矩阵线性代数学习
矩阵论-线性空间与线性变换文章目录矩阵论-线性空间与线性变换一、线性空间1、线性空间1.1向量空间1.2线性空间1.3线性空间典型例子2、线性空间的基和维数2.1线性组合2.2线性相关与线性无关2.3基和维数2.4坐标3.基变换和坐标变换4.线性空间的同构4.1等价关系4.2性质二、线性子空间1、线性子空间2、维数公式3、子空间的直和三、线性变换1、映射2、线性变换3、线性变换的运算3.1线性变换
- 【矩阵论】矩阵的相似标准型(3)
kodoshinichi
数学#矩阵论线性代数矩阵论对角化线性变换
矩阵的相似标准型之“可对角化的条件”本节主要围绕着矩阵(或线性变换)能否进行对角化以及如何进行对角化进行讨论。【对角化的判断】矩阵的对角化:对给定的矩阵,判断能否相似于对角阵线性变换的对角化:对给定的线性空间上的线性变换,判断是否存在空间的一组基,使得其矩阵是对角阵。前面有关线性变换、线性空间和矩阵讨论了那么多,我们已经可以在矩阵和线性变换之间建立一个对应关系了,因此矩阵的对角化问题和相似变换的对
- 人工智能中的线性代数与矩阵论学习秘诀之知识体系
audyxiao001
人工智能怎么学人工智能线性代数矩阵学习方法
很多人学完线性代数、矩阵论两门课程后,完全不知道自己学了些什么,也不知道学这两门课程有什么用,心中满是疑惑。首先线性代数和矩阵论属于代数学范畴,既然如此,让我们先回忆一下从小学到高中是如何学习代数的。以实数为例,先了解什么是实数,然后学习实数的基本运算,接下来将多个实数打包在一起构成集合并研究不同集合的性质和变换。现在将实数换成向量,按照类似的步骤走一遍这个流程,我们将得到:“先了解什么是向量,然
- 【线性代数与矩阵论】坐标变换与相似矩阵
你哥同学
线性代数与矩阵论线性代数矩阵机器学习
坐标变换与相似矩阵2023年11月4日#algebra文章目录坐标变换与相似矩阵1.基变换与坐标变换2.相似变换下链1.基变换与坐标变换坐标变换与基变换都要通过过渡矩阵AAA来实现。设有一向量f⃗\vecff,xxx是在基α\alphaα下该向量的坐标,yyy是在新基β\betaβ下该向量的坐标,则基变换为:β=αA , A=α−1β\beta=\alphaA\,\,,\,\,A=\alpha
- 矩阵论(零):线性代数基础知识整理(2)——矩阵的秩与向量组的秩
exp(i)
机器学习的数学基础线性代数矩阵论机器学习
矩阵论专栏:专栏(文章按照顺序排序)本篇博客承接上篇矩阵论(零):线性代数基础知识整理(1)——逆矩阵、初等变换、满秩分解,主要整理秩相关的结论。线性方程组的解与向量组的秩线性方程组的解(初步讨论)向量组的秩线性方程组的解(进一步讨论)零矩阵的判定定理关于秩的重要结论(结合向量组的秩、分块矩阵的秩的方法进行总结)矩阵的秩与向量组的秩的关系常用矩阵秩相关的等式和不等式公式1:∣r(A)−r(B)∣⩽
- 矩阵论(零):线性代数基础知识整理(5)——特征值与相似
exp(i)
机器学习的数学基础线性代数矩阵
矩阵论专栏:专栏(文章按照顺序排序)本篇博客的上篇是矩阵论(零):线性代数基础知识整理(4)——线性空间与线性变换,梳理了线性空间与线性变换的相关内容。本文主要整理矩阵的特征值与相似的相关内容。方阵的特征值特征值的定义及性质特殊矩阵的特征值与特征向量(对角矩阵、上(下)三角矩阵、酋矩阵、分块矩阵)AAA、ATA^TAT、AHA^HAH的特征值的关系AHAA^HAAHA和AAHAA^HAAH的特征值
- [矩阵论] Unit 6. 矩阵的 Kronecker 积与 Hadamard 积 - 知识点整理
PeakCrosser
矩阵论矩阵线性代数
注:以下内容均由个人整理,不保证完全准确,如有纰漏,欢迎交流讨论参考:杨明,刘先忠.矩阵论(第二版)[M].武汉:华中科技大学出版社,20056矩阵的Kronecker积与Hadamard积6.1Kronecker积与Hadamard积的定义K-积和H-积定义K-积:Am×n⊗Bs×t=[aijB]ms×nt=[a11B⋯a1nBa21B⋯a2nB⋯⋯⋯am1B⋯amnB]A_{m\timesn}
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多