标签(空格分隔): 多项式 商环
[ L : K ] = [ L : F ] ⋅ [ F : K ] [L:K]=[L:F] \cdot [F:K] [L:K]=[L:F]⋅[F:K]
有限扩张是代数扩
每个有限扩张都是代数扩张
任何一个有限代数扩张 K ( a 1 , . . . , a n ) / K K(a_1,...,a_n)/K K(a1,...,an)/K 都是有限生成的$
不能写成两个次数较低的多项式之乘积的多项式
g c d ( a 1 , a 2 , . . . , a n ) = 1 gcd(a_1,a_2,...,a_n)=1 gcd(a1,a2,...,an)=1
( R , + ) (R,+) (R,+) is abelian group
( R , ⋅ ) (R,\cdot) (R,⋅) is semi group
∀ a , b , c ∈ R , a ( b + c ) = a b + a c , ( b + c ) a = b a + c a \forall a,b,c \in R, a(b+c)=ab+ac, (b+c)a=ba+ca ∀a,b,c∈R,a(b+c)=ab+ac,(b+c)a=ba+ca
then ( R , + , ⋅ ) (R,+,\cdot) (R,+,⋅) is a ring
Z / n Z = { 0 ˉ , 1 ˉ , . . . , n − 1 ˉ } , i ˉ = { i + k n ∣ k ∈ Z } \mathbb{Z}/n\mathbb{Z}=\{ \bar{0}, \bar{1}, ..., \bar{n-1}\}, \bar{i}=\{i+kn|k\in \mathbb{Z}\} Z/nZ={0ˉ,1ˉ,...,n−1ˉ},iˉ={i+kn∣k∈Z}
a ˉ + b ˉ = a + b ˉ = b + a ˉ = b ˉ + a ˉ , a ˉ b ˉ = a b ˉ \bar{a}+\bar{b} = \bar{a+b}=\bar{b+a}=\bar{b}+\bar{a},\bar{a}\bar{b}=\bar{ab} aˉ+bˉ=a+bˉ=b+aˉ=bˉ+aˉ,aˉbˉ=abˉ
R [ x ] = { a n x n + ⋯ + a 1 x + a 0 ∣ a i ∈ R , i = 0 , 1 , . . . , n , i ∈ Z + } R[x]=\{a_nx^n+ \cdots +a_1x+a_0|a_i \in R,i=0,1,...,n, i \in \mathbb{Z}^+ \} R[x]={anxn+⋯+a1x+a0∣ai∈R,i=0,1,...,n,i∈Z+}
f ( α ) ∈ R [ x ] , f ( x ) = ∑ j = 1 n a i x i = 0 f(\alpha) \in R[x], f(x)=\sum_{j=1}^na_ix^i=0 f(α)∈R[x],f(x)=∑j=1naixi=0
Z [ x ] → Z / n Z [ x ] \mathbb{Z}[x] \rightarrow \mathbb{Z}/n\mathbb{Z}[x] Z[x]→Z/nZ[x] is homomorphism
K e r ϕ = { f ( x ) ∈ R [ x ] ∣ f ( α ) = 0 } = { g ( x ) ∈ R [ x ] ∣ ( x − α ) g ( x ) } Ker \phi=\{f(x) \in R[x]|f(\alpha)=0\}=\{g(x)\in R[x]|(x-\alpha)g(x)\} Kerϕ={f(x)∈R[x]∣f(α)=0}={g(x)∈R[x]∣(x−α)g(x)}
f ( x ) , g ( x ) ∈ R [ x ] f(x), g(x)\in R[x] f(x),g(x)∈R[x]
f ( x ) = ∑ k = 0 n a k x k , g ( x ) = ∑ k = 0 n b k x k f(x)=\sum_{k=0}^na_kx^k, g(x)=\sum_{k=0}^nb_kx^k f(x)=k=0∑nakxk,g(x)=k=0∑nbkxk
f ( x ) + g ( x ) = ∑ k = 0 n a k x k + ∑ k = 0 n b k x k = ( a 0 + a 1 x + . . . + a n x n ) + ( b 0 + b 1 x + . . . + b n x n ) = ∑ k = 0 n ( a k + b k ) x k f(x)+g(x)=\sum_{k=0}^na_kx^k + \sum_{k=0}^nb_kx^k =(a_0+a_1x+...+a_nx^n)+(b_0+b_1x+...+b_nx^n)= \sum_{k=0}^n(a_k+b_k)x^k f(x)+g(x)=k=0∑nakxk+k=0∑nbkxk=(a0+a1x+...+anxn)+(b0+b1x+...+bnxn)=k=0∑n(ak+bk)xk
f ( x ) g ( x ) = ∑ k = 0 n a k x k ⊗ ∑ k = 0 n b k x k = ( a 0 + a 1 x + . . . + a n x n ) ⊗ ( b 0 + b 1 x + . . . + b n x n ) = ∑ i = 0 n ∑ j = 0 n a i b j x i + j f(x)g(x)=\sum_{k=0}^na_kx^k \otimes \sum_{k=0}^nb_kx^k=(a_0+a_1x+...+a_nx^n) \otimes (b_0+b_1x+...+b_nx^n)=\sum_{i=0}^n\sum_{j=0}^n{a_ib_jx^{i+j}} f(x)g(x)=k=0∑nakxk⊗k=0∑nbkxk=(a0+a1x+...+anxn)⊗(b0+b1x+...+bnxn)=i=0∑nj=0∑naibjxi+j
∀ f ( x ) ∈ I [ x ] , ∀ g ( x ) ∈ R [ x ] \forall f(x) \in I[x], \forall g(x) \in R[x] ∀f(x)∈I[x],∀g(x)∈R[x]
f ( x ) g ( x ) ∈ I [ x ] , g ( x ) f ( x ) ∈ I [ x ] f(x)g(x) \in I[x], g(x)f(x) \in I[x] f(x)g(x)∈I[x],g(x)f(x)∈I[x]
I [ x ] I[x] I[x] is ideal in R [ x ] R[x] R[x]
φ : R 1 → R 2 \varphi:R_1 \rightarrow R_2 φ:R1→R2
φ ( a i + b j ) = φ ( a i ) + φ ( b j ) \varphi(a_i+b_j)=\varphi(a_i)+\varphi(b_j) φ(ai+bj)=φ(ai)+φ(bj)
φ ( a i b j ) = φ ( a i ) φ ( b j ) \varphi(a_i b_j)=\varphi(a_i)\varphi(b_j) φ(aibj)=φ(ai)φ(bj)
a i , b j ∈ R 1 a_i, b_j \in R_1 ai,bj∈R1
R_1 and R_2 are homomorphism
ψ ( f ( x ) ) = ∑ i = 0 n φ ( a i ) x i \psi(f(x))=\sum_{i=0}^n\varphi(a_i)x^i ψ(f(x))=∑i=0nφ(ai)xi
then
ψ : R 1 [ x ] → R 2 [ x ] \psi:R_1[x] \rightarrow R_2[x] ψ:R1[x]→R2[x]
ψ ( g ( x ) + h ( x ) ) = ψ ( g ( x ) ) + ψ ( h ( x ) ) \psi(g(x)+h(x))=\psi(g(x)) + \psi(h(x)) ψ(g(x)+h(x))=ψ(g(x))+ψ(h(x))
ψ ( g ( x ) h ( x ) ) = ψ ( g ( x ) ) ψ ( h ( x ) ) \psi(g(x)h(x))=\psi(g(x))\psi(h(x)) ψ(g(x)h(x))=ψ(g(x))ψ(h(x))
g ( x ) , h ( x ) ∈ R 1 [ x ] g(x), h(x) \in R_1[x] g(x),h(x)∈R1[x]
detail:
ψ ( g ( x ) + h ( x ) ) = ψ ( ∑ k = 0 n ( a k + b k ) x k ) = ∑ k = 0 n φ ( a k + b k ) x k = ∑ k = 0 n ( φ ( a k ) + φ ( b k ) ) x k = ∑ k = 0 n ( φ ( a k ) ) x k + ∑ k = 0 n ( φ ( b k ) ) x k = ψ ( g ( x ) ) + ψ ( h ( x ) ) \begin{align} \psi(g(x)+h(x))&=\psi \left( \sum_{k=0}^n(a_k+b_k)x^k \right)\\ &=\sum_{k=0}^n\varphi(a_k+b_k)x^k\\ &=\sum_{k=0}^n\left(\varphi(a_k) + \varphi(b_k)\right)x^k \\ &=\sum_{k=0}^n(\varphi(a_k))x^k + \sum_{k=0}^n(\varphi(b_k))x^k\\ &=\psi(g(x)) + \psi(h(x)) \end{align} ψ(g(x)+h(x))=ψ(k=0∑n(ak+bk)xk)=k=0∑nφ(ak+bk)xk=k=0∑n(φ(ak)+φ(bk))xk=k=0∑n(φ(ak))xk+k=0∑n(φ(bk))xk=ψ(g(x))+ψ(h(x))
ψ ( g ( x ) h ( x ) ) = ψ ( ∑ i = 0 n ∑ j = 0 n a i b j x i + j ) = ∑ i = 0 n ∑ j = 0 n ψ ( a i b j ) x i + j = ∑ i = 0 n ∑ j = 0 n ψ ( a i ) ψ ( b j ) x i + j = ∑ i = 0 n ψ ( a i ) x i ∑ j = 0 n ψ ( b j ) x j = ψ ( g ( x ) ) ψ ( h ( x ) ) \begin{align} \psi(g(x)h(x))&=\psi \left( \sum_{i=0}^n\sum_{j=0}^n{a_ib_jx^{i+j}} \right)\\ &=\sum_{i=0}^n\sum_{j=0}^n{\psi(a_ib_j)x^{i+j}}\\ &=\sum_{i=0}^n\sum_{j=0}^n{\psi(a_i)\psi(b_j)x^{i+j}}\\ &=\sum_{i=0}^n{\psi(a_i)x^i}\sum_{j=0}^n\psi(b_j)x^j\\ &=\psi(g(x)) \psi(h(x)) \end{align} ψ(g(x)h(x))=ψ(i=0∑nj=0∑naibjxi+j)=i=0∑nj=0∑nψ(aibj)xi+j=i=0∑nj=0∑nψ(ai)ψ(bj)xi+j=i=0∑nψ(ai)xij=0∑nψ(bj)xj=ψ(g(x))ψ(h(x))
( P ( x ) ) = { P ( x ) ∗ h ( x ) ∣ h ( x ) ∈ F ( x ) } (P(x))=\{P(x)*h(x)|h(x)\in F(x)\} (P(x))={P(x)∗h(x)∣h(x)∈F(x)} is ideal
[ F [ x ] / ( P ( x ) ) , ⊕ , ⊗ ] [F[x]/(P(x)), \oplus , \otimes] [F[x]/(P(x)),⊕,⊗] is Ring
0 is zero element in F [ x ] F[x] F[x]
1 is identity in F [ x ] F[x] F[x]
( P ( x ) ) + 0 (P(x))+0 (P(x))+0 zero element
( P ( x ) ) + 1 (P(x))+1 (P(x))+1 identity
F [ x ] / ( P ( x ) ) = { ( P ( x ) ) + ∑ i = 1 n − 1 a i x i ∣ a i ∈ F , i = 1 , . . . n } F[x]/(P(x))=\{(P(x))+\sum_{i=1}^{n-1}a_ix^i|a_i \in F, i=1,...n\} F[x]/(P(x))={(P(x))+∑i=1n−1aixi∣ai∈F,i=1,...n}
[ Z 2 [ x ] , + , ∗ ] , p ( x ) = x 2 + x + 1 [\mathbb{Z}_2[x], +, *], p(x)=x^2+x+1 [Z2[x],+,∗],p(x)=x2+x+1
Z 2 [ x ] / ( p ( x ) ) = { ( p ( x ) ) , ( p ( x ) ) + 1 , ( p ( x ) ) + x , ( p ( x ) ) + ( x + 1 ) } = { 0 , 1 , x , x + 1 } \mathbb{Z}_2[x]/(p(x)) \\ =\{(p(x)), (p(x))+1, (p(x))+x, (p(x))+(x+1)\} \\ =\{0, 1,x,x+1\} Z2[x]/(p(x))={(p(x)),(p(x))+1,(p(x))+x,(p(x))+(x+1)}={0,1,x,x+1}
+ | 0 | 1 | x | x+1 |
---|---|---|---|---|
0 | 0 | 1 | x | x+1 |
1 | 1 | 0 | x+1 | x |
x | x | x+1 | 0 | 1 |
x+1 | x+1 | x | 1 | 0 |
* | 0 | 1 | x | x+1 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | x | x+1 |
x | 0 | x | x+1 | 1 |
x+1 | 0 | x+1 | 1 | x |
Z 3 [ x ] / ( x 2 + 1 ) = { a x + b ∣ a , b ∈ Z 3 } \mathbb{Z}_3[x]/(x^2+1)=\{ax+b|a,b\in \mathbb{Z}_3\} Z3[x]/(x2+1)={ax+b∣a,b∈Z3}
Example. The polynomial f ( x ) = x 3 + 2 x + 4 ∈ Z 5 [ x ] f(x) = x^3 + 2x+ 4 \in \mathbb{Z}_5[x] f(x)=x3+2x+4∈Z5[x]of degree 3 is irreducible because it has no roots in Z 5 \mathbb{Z}_5 Z5
Z n [ x ] = { ∑ i = 0 m a i x i ∣ a i ∈ Z n , m ∈ Z + } \mathbb{Z}_n[x]=\left \{\sum_{i=0}^m a_i x^i \mid a_i \in \mathbb{Z}_n, m\in \mathbb{Z}^+\right \} Zn[x]={i=0∑maixi∣ai∈Zn,m∈Z+}
Z n [ x ] / ( p ( x ) ) = { p ( x ) + ∑ i = 0 m a i x i ∣ a i ∈ Z n , m = d e g ( p ( x ) ) − 1 } \mathbb{Z}_n[x]/(p(x))=\left\{p(x) + \sum_{i=0}^m a_i x^i \mid a_i \in \mathbb{Z}_n, m = deg(p(x))-1\right\} Zn[x]/(p(x))={p(x)+i=0∑maixi∣ai∈Zn,m=deg(p(x))−1}
( p ( x ) , r ( x ) ) = a ∈ F ∗ , s ( x ) , t ( x ) ∈ F ( x ) , p ( x ) s ( x ) + r ( x ) t ( x ) = a (p(x), r(x))=a\in F^*,s(x), t(x) \in F(x), p(x)s(x)+r(x)t(x)=a (p(x),r(x))=a∈F∗,s(x),t(x)∈F(x),p(x)s(x)+r(x)t(x)=a
→ ( p ( x ) ) + a − 1 t ( x ) = ( ( p ( x ) ) + r ( x ) ) − 1 \rightarrow (p(x))+a^{-1}t(x)=((p(x))+r(x))^{-1} →(p(x))+a−1t(x)=((p(x))+r(x))−1
x 5 + x 4 + x + 1 x 2 + x + 1 = x 3 + x + 1 ⋯ x \frac{x^5+x^4+x+1}{x^2+x+1}=x^3+x+1\cdots x x2+x+1x5+x4+x+1=x3+x+1⋯x
x^3 +x +1
------------------------
x^2+x+1| x^5+x^4 +x+1
x^5+x^4+x^3
------------------------
x^3 +x+1
x^3+x^2+x
------------------------
x^2 +1
x^2+x+1
------------------------
x
Prime-Polynomial
一个 m m m阶的不可约多项式 f ( x ) f(x) f(x),如果 f ( x ) f(x) f(x)整除 x n + 1 x^n+1 xn+1的最小正整数 n n n满足 n = 2 m − 1 n =2m−1 n=2m−1,则该多项式是本原的。
1. 环R[x]的性质, 2012届学士学位论文
2. 离散数学教学课件 (12)
3. math.byu.edu bakker M371Lec19
4. 求解本原多项式的快速算法 1000—3428(2008)15—0146—02