如何建树
模仿 k r u s k a l kruskal kruskal,先将所有边排序。
依次遍历每一条边,如果这条边的两个节点( u , v u, v u,v)不在同一个连通块里面,
则新建一个 n o d e node node节点,更新 f a [ u ] = f a [ v ] = n o d e fa[u] = fa[v] = node fa[u]=fa[v]=node,同时有 f a [ n o d e ] = n o d e fa[node] = node fa[node]=node,
建立 n o d e − > u , n o d e − > v node-> u, node-> v node−>u,node−>v的边,同时给 n o d e node node节点赋值上这条边的边权,
一些性质
① 是一个小/大根堆(由建树时边权的排序方式决定)。
② L C A ( u , v ) LCA(u, v) LCA(u,v)的权值是从 u u u到 v v v的路径上的最大/最小边权的最小/最大值(同样由建树是边权的排序所决定)。
显然,对于每个新建的 n o d e node node节点,一定有权值是由深度更小到深度更大递减的(如果排序时按照升序排列),反之亦然,所以易证得 ① ② 成立。
#include
using namespace std;
const int N = 1e5 + 10;
int value[N], ff[N], nn, n, m, q;
int head[N], to[N], nex[N], cnt = 1;
int fa[N], son[N], sz[N], dep[N], top[N], tot;
struct Res {
int u, v, w;
void read() {
scanf("%d %d %d", &u, &v, &w);
}
bool operator < (const Res &t) const {
return w < t.w;
}
}a[N];
void add(int x, int y) {
to[cnt] = y;
nex[cnt] = head[x];
head[x] = cnt++;
}
int find(int rt) {
return rt == ff[rt] ? rt : ff[rt] = find(ff[rt]);
}
void dfs1(int rt, int f) {
fa[rt] = f, dep[rt] = dep[f] + 1, sz[rt] = 1;
for (int i = head[rt]; i; i = nex[i]) {
if (to[i] == f) {
continue;
}
dfs1(to[i], rt);
sz[rt] += sz[to[i]];
if (sz[son[rt]] < sz[to[i]]) {
son[rt] = to[i];
}
}
}
void dfs2(int rt, int tp) {
top[rt] = tp;
if (!son[rt]) {
return ;
}
dfs2(son[rt], tp);
for (int i = head[rt]; i; i = nex[i]) {
if (to[i] == fa[rt] || to[i] == son[rt]) {
continue;
}
dfs2(to[i], to[i]);
}
}
int lca(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) {
swap(x, y);
}
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
void kruskal() {
for (int i = 1; i < N; i++) {
ff[i] = i;
}
for (int i = 1; i <= m; i++) {
int u = a[i].u, v = a[i].v;
int fu = find(u), fv = find(v);
if (fu != fv) {
value[++n] = a[i].w;
ff[n] = ff[fu] = ff[fv] = n;
add(n, fv), add(n, fu);
}
}
dfs1(n, 0), dfs2(n, n);
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
scanf("%d %d %d", &nn, &m, &q), n = nn;
for (int i = 1; i <= m; i++) {
a[i].read();
}
sort(a + 1, a + 1 + m);
kruskal();
while (q--) {
int u, v;
scanf("%d %d", &u, &v);
printf("%d\n", value[lca(u, v)]);
}
return 0;
}
我们要求从一个点出发经过困难值小于等于 x x x的路径所能到达的山峰中第 k k k高的是什么。
考虑按照边权升序,建议 k r u s k a l kruskal kruskal重构树,然后倍增向上跳,找到困难值小于等于 x x x的深度最小的节点 u u u,
那么我们只要在 u u u的子树中询问第 k k k大即可,所以可以用主席树来写,依照 d f s dfs dfs序,对每个节点建立一颗主席树,然后在主席树上查找第 k k k大即可。
#include
using namespace std;
const int N = 5e5 + 10;
int head[N], to[N], nex[N], cnt = 1;
int n, m, q, nn, a[N], ff[N], value[N], h[N];
int fa[N][21], l[N], r[N], rk[N], tot;
int root[N], ls[N << 7], rs[N << 7], sum[N << 7], num;
struct Res {
int u, v, w;
bool operator < (const Res &t) const {
return w < t.w;
}
}edge[N];
void add(int x, int y) {
to[cnt] = y;
nex[cnt] = head[x];
head[x] = cnt++;
}
void update(int &rt, int pre, int l, int r, int x, int v) {
rt = ++num;
ls[rt] = ls[pre], rs[rt] = rs[pre], sum[rt] = sum[pre] + v;
if (l == r) {
return ;
}
int mid = l + r >> 1;
if (x <= mid) {
update(ls[rt], ls[pre], l, mid, x, v);
}
else {
update(rs[rt], rs[pre], mid + 1, r, x, v);
}
}
int query(int L, int R, int l, int r, int k) {
if (l == r) {
return l;
}
int res = sum[ls[R]] - sum[ls[L]], mid = l + r >> 1;
if (res >= k) {
return query(ls[L], ls[R], l, mid, k);
}
else {
return query(rs[L], rs[R], mid + 1, r, k - res);
}
}
int find(int rt) {
return rt == ff[rt] ? rt : ff[rt] = find(ff[rt]);
}
void dfs(int rt, int f) {
fa[rt][0] = f, l[rt] = ++tot, rk[tot] = rt;
for (int i = 1; i <= 20; i++) {
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
}
for (int i = head[rt]; i; i = nex[i]) {
if (to[i] == f) {
continue;
}
dfs(to[i], rt);
}
r[rt] = tot;
}
void kruskal() {
for (int i = 1; i < N; i++) {
ff[i] = i;
}
sort(edge + 1, edge + 1 + m);
for (int i = 1, cur = 1; i <= m && cur < n; i++) {
int u = find(edge[i].u), v = find(edge[i].v);
if (u != v) {
cur++, nn++;
ff[u] = nn, ff[v] = nn;
value[nn] = edge[i].w;
add(nn, u), add(nn, v);
if (u <= n) {
value[u] = edge[i].w;
}
if (v <= n) {
value[v] = edge[i].w;
}
}
}
dfs(nn, 0);
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
scanf("%d %d %d", &n, &m, &q);
for (int i = 1; i <= n; i++) {
scanf("%d", &h[i]);
a[i] = h[i];
}
nn = n;
for (int i = 1; i <= m; i++) {
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
}
kruskal();
int maxn = n;
sort(a + 1, a + 1 + maxn);
maxn = unique(a + 1, a + 1 + maxn) - (a + 1);
for (int i = 1; i <= n; i++) {
h[i] = lower_bound(a + 1, a + 1 + maxn, h[i]) - a;
}
for (int i = 1; i <= nn; i++) {
root[i] = root[i - 1];
if (rk[i] <= n) {
update(root[i], root[i], 1, maxn, h[rk[i]], 1);
}
}
for (int i = 1, u, x, k, last_ans = 0, res; i <= q; i++) {
scanf("%d %d %d", &u, &x, &k);
if (last_ans != -1) {
u ^= last_ans, x ^= last_ans, k ^= last_ans;
}
for (int j = 20; j >= 0; j--) {
if (fa[u][j] && value[fa[u][j]] <= x) {
u = fa[u][j];
}
}
res = sum[root[r[u]]] - sum[root[l[u] - 1]];
last_ans = res < k ? -1 : a[query(root[l[u] - 1], root[r[u]], 1, maxn, res - k + 1)];
printf("%d\n", last_ans);
}
return 0;
}
给定一个 n n n个点, m m m条边的无向联通图,边的描述为 [ u , v , l , a ] [u, v, l, a] [u,v,l,a],表示 u u u, v v v连有一条长度为 l l l,海拔为 a a a的边,
有 Q Q Q个询问,每次给出一个出发点 u u u和一个海拔限制高度 p p p,并且在出发点有一辆车,这辆车可以通过海拔大于 p p p的边,
问,从 u − > 1 u->1 u−>1的最短步行长度是什么多少。
设从 u u u坐车出发可到的点集为 S S S,我们的任务就是找到一个点 v , v ∈ S v, v \in S v,v∈S, d i s ( v , 1 ) dis(v, 1) dis(v,1)是 d i s ( x , 1 ) , x ∈ S dis(x, 1),x \in S dis(x,1),x∈S中最的小。
① 预处理出每个点到点 1 1 1的最短路径出来,
② 我们按照海拔高度降序建立一颗 k r u s k a l kruskal kruskal重构树,
③ 从 u u u号点往上跳,找到可坐车到达的深度最小的节点 r t rt rt,显然从 u u u可坐车到达的点集就是 r t rt rt所在的这颗子树,
④ 由于我们查找的是最小值,所以只需在 d f s dfs dfs的过程中,不断向上更新整颗子树的最小值即可。
⑤ 直接输出我们找到的 r t rt rt所代表的答案。
#include
using namespace std;
const int N = 1e6 + 10;
int head[N], to[N], nex[N], cnt = 1;
int head1[N], to1[N], nex1[N], value1[N], cnt1 = 1;
int vis[N], dis[N], ff[N], value[N], fa[N][21], ans[N], nn, n, m, Q, K, S;
struct Edge {
int u, v, w;
bool operator < (const Edge &t) const {
return w > t.w;
}
}edge[N];
struct Node {
int u, w;
bool operator < (const Node &t) const {
return w > t.w;
}
};
void add1(int x, int y, int w) {
to1[cnt1] = y;
nex1[cnt1] = head1[x];
value1[cnt1] = w;
head1[x] = cnt1++;
}
void add(int x, int y) {
to[cnt] = y;
nex[cnt] = head[x];
head[x] = cnt++;
}
priority_queue<Node> q;
void Dijkstra() {
while (q.size()) {
q.pop();
}
q.push({1, 0});
memset(vis, 0, sizeof vis), memset(dis, 0x3f, sizeof dis);
dis[1] = 0;
while (q.size()) {
int rt = q.top().u;
q.pop();
if (vis[rt]) {
continue;
}
vis[rt] = 1;
for (int i = head1[rt]; i; i = nex1[i]) {
if (dis[to1[i]] > dis[rt] + value1[i]) {
dis[to1[i]] = dis[rt] + value1[i];
q.push({to1[i], dis[to1[i]]});
}
}
}
}
int find(int rt) {
return ff[rt] == rt ? rt : ff[rt] = find(ff[rt]);
}
void dfs(int rt, int f) {
fa[rt][0] = f, ans[rt] = rt <= n ? dis[rt] : 0x3f3f3f3f;
for (int i = 1; i <= 20; i++) {
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
}
for (int i = head[rt]; i; i = nex[i]) {
if (to[i] == f) {
continue;
}
dfs(to[i], rt);
ans[rt] = min(ans[rt], ans[to[i]]);
}
}
void kruskal() {
for (int i = 1; i < N; i++) {
ff[i] = i, head[i] = 0;
}
cnt = 1;
sort(edge + 1, edge + 1 + m);
for (int i = 1, cur = 1; i <= m && cur < n; i++) {
int u = find(edge[i].u), v = find(edge[i].v);
if (u != v) {
cur++, nn++;
ff[u] = nn, ff[v] = nn;
value[nn] = edge[i].w;
add(nn, u), add(nn, v);
if (u <= n) {
value[u] = edge[i].w;
}
if (v <= n) {
value[v] = edge[i].w;
}
}
}
dfs(nn, 0);
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int T;
scanf("%d", &T);
while (T--) {
scanf("%d %d", &n, &m);
nn = n;
memset(head1, 0, sizeof head1), cnt1 = 1;
for (int i = 1, u, v, l, a; i <= m; i++) {
scanf("%d %d %d %d", &u, &v, &l, &a);
add1(u, v, l), add1(v, u, l);
edge[i] = {u, v, a};
}
Dijkstra();
kruskal();
scanf("%d %d %d", &Q, &K, &S);
for (int i = 1, v, p, last_ans = 0; i <= Q; i++) {
scanf("%d %d", &v, &p);
v = (v + 1ll * K * last_ans - 1) % n + 1, p = (p + 1ll * K * last_ans) % (S + 1);
for (int j = 20; j >= 0; j--) {
if (fa[v][j] && value[fa[v][j]] > p) {
v = fa[v][j];
}
}
last_ans = ans[v];
printf("%d\n", last_ans);
}
}
return 0;
}