完全剩余系我们定义ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的完全剩余系当且仅当对于∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n且i≠ji\neji=j,满足ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),对于∀0≤i
数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
数论-乘法逆元【裴蜀定理+欧拉定理/费马小定理】
舍舍发抖
数论算法
具体逆元相关看这个博客,更详细裴蜀定理定义:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。(根据拓展欧几里得定理得出ax+by=gcd(a,b))这篇博客提到拓展欧几里的公式及推导这篇也参考一下一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1证明这里就不详细说了,参考博客:http
费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
乘法逆元())
哑巴湖大水怪1
算法
时间复杂度比用费马小定理高,小费马是O(log(p))O(log(p)).但是,小费马要求p是质数,而欧拉定理仅仅要求a,p互质。另外一点就是,用扩欧做得话,时间复杂度也是O(log(p))O(log(p)),且也是要求a,p互质就可以。综合看,扩欧是最优选择。快速幂求逆元时p要求为质数,而扩展欧几里得只要两者互质
【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
【算法基础 & 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)
为梦而生~
基础算法算法acm蓝桥杯数学逆元快速幂
文章目录为什么需要逆元逆元的概念1.单位元2.逆元3.模乘的单位元4.模乘的逆元开始求逆元1.扩展欧几里得定理2.费马小定理原文链接为什么需要逆元首先,在算法竞赛中,很多情况下会遇到数值很大的数据,这个时候,题目往往会让我们对某个数去摸,来控制数据范围。在±*运算中,我们可以对每个数单独取模,然后再对运算之后的数取模。但是除法比较特殊,例如:(40÷5)mod10≠((40mod10)÷(5mod
C语言--质数算法和最大公约数算法
何浩钧
算法c语言数据结构
文章目录1.在C语言中,判断质数的常见算法有以下几种:1.1.试除法(暴力算法):1.2.优化试除法:1.3.埃拉托色尼筛法:1.4.米勒-拉宾素性检验:1.5.线性筛法:1.6.费马小定理:1.7.素性检验:2.在C语言中,求两个数的最大公约数的常见算法有以下几种:2.1.辗转相减法2.2.辗转相除法2.2.1.迭代实现:2.2.2.递归实现:2.3.`Stein`算法2.4.`Lehmer`算
欧拉函数算法总结
ykycode
经典算法总结数论算法欧拉函数数学数论线性筛法欧拉定理费马小定理
知识概览欧拉函数为1~n中与n互质的数的个数。假设一个数N分解质因数后的结果为则欧拉函数这可以用容斥原理来证明。欧拉函数的应用欧拉定理:若a与n互质,则。费马小定理:欧拉定理中的n为质数p时,可以得到若a与p互质,则。例题展示欧拉函数题目链接活动-AcWing系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www.acwing.com/problem
费马小定理(求逆元)
Zqchang
#蓝桥杯c++
首先解释一下什么是逆元若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得a/b≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数时,bm−2b^{m-2}bm−2即为b的乘法逆元。然后我们就会发现,,好家伙,这定义真难懂,然后我们用人话通俗的解释一下紧接着我们来进行一些推导这就是一般的利用快速
算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
同余-费马小定理-乘法逆元与线性同余方程
litian355
数学相关算法
update1:初等数论部分(是对下面拓展欧几里得算法的铺垫):update2:由于第一开始学习理解不够深入,出现众多错误,现在看来真是误人子弟(实在太烂了),现在修改了一些错误,同时润滑了一下语言。线性方程ax+by=gcd(a,b)的解:假设特解(x0,y0)是方程组的一组解,d=gcd(a,b),那么通解就是x=x0+b/d*k,y=y0-a/d*k;例如10x+35y=5,的一组特解(-3
Miller_Rabin (米勒-拉宾) 素性测试
weixin_33845477
c/c++python
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解。借着学习《信息安全数学基础》将素性这一判定方法学习一遍。首先证明一下费马小定理。若p为素数,且gcd(a,p)=1,则有a^(p-1)=1(modp)基于以下定理若(a,p)=1,{x|(x,p)=1}为模p下的一个完全剩余系,则{ax|(x,p)=1}也为模p下的一个完全剩余系。又{0,1,2,...p-1}为模p下一个剩余系因此有,
米勒-拉宾素数检测法(判断一个极大的数是否为质数)——算法解析
风中的微尘
数学算法
一、算法简介在算法竞赛中,我们时常会遇到需要判断一个数是否为质数的问题。我们常常利用筛法来解决这个问题,但是当需要判断的数变得很大时,筛法已经无法满足我们的需求。于是我们采用了一个新的方法:Miller-Rabin素数检测。二、算法分析1.前置知识(1)费马小定理由费马小定理可知,若ppp为质数且aaa不是ppp的倍数,ap−1≡1(modp)a^{p-1}\equiv1(mod\p)ap−1≡1
米勒-拉宾(MillerRabbin)素性测试算法
GZkx
算法题
原创滴博客~https://www.cnblogs.com/precious-ZPF/p/9481599.html小编赶紧摘过来的,多看几遍向银家多学习学习QAQ首先,在了解米勒-拉宾素性测试之前,我们要先了解费马小定理。关于费马小定理就不再细说原理和证明了,应用非常广泛。费马小定理中说若p是质数则有a的(p-1)次方在(modp)的情况下恒等于1数学表达式--->a^(p-1)≡1(modp)然
费马素性测试和米勒—拉宾素性测试
hexianhao
数学数学
chapter1Fermat'slittletheorem费马小定理费马小定理说的是:如果p是一个素数,那么对于任意一个整数a,ap−a能被p整除,也可以用模运算表示如下:(p是素数,a是整数)这个定理又如下变式:如果p是一个素数,且整数a与p互素,那么ap−1−1可以被p整除,用模运算表示如下(p是素数,a是整数,a与p互素)、还有一种表述是:如果p是一个素数,a是一个整数且a不包含因数p,那么
一张图全解组合数计算
学数学的懒哥
算法学习分享算法python蓝桥杯
废话不多数直接上图一、组合数模板1#c[a][b]表示从a个糖果中选b个的方案foriinrange(N):forjinrange(i+1):ifj==0:c[i][j]=1else:c[i][j]=(c[i-1][j]+c[i-1][j-1])%p二、组合数模板2#首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]#如果取模的数是质数,可以用费马小定理求逆元d
RSA加密算法
西电卢本伟
密码学算法
文章目录什么是RSA一些废话安全性RSA算法参数参数解释加密算法解密算法生成密钥对例子常见大整数N的分解方法逆元定义如何求解费马小定理扩展欧几里得中国剩余定理(CRT)加速RSA算法CRT简介降N降d解密什么是RSA一些废话RSA是一种公钥密码算法,它的名字是由它的三位开发者,即RonRivest、AdiShamir和LeonardAdleman的姓氏的首字母组成的。RSA可以被用于公钥密码和数字
高中奥数 2021-07-29
天目春辉
2021-07-28-01(来源:数学奥林匹克小丛书第二版高中卷数论余红兵几个著名的数论定理P045例1)设是给定的素数.证明:数列中有无穷多个项被整除.证明时结论显然成立.设,则由费马小定理得,从而对任意正整数有.(1)我们取,则由(1),得.因此,若,则被整除(为任意正整数),故数列中有无穷多项被力整除.2021-07-28-02(来源:数学奥林匹克小丛书第二版高中卷数论余红兵几个著名的数论定
数论ex
weixin_30483495
数论ex数学学得太差了补补知识点or复习Miller-Rabin和PollardRhoMiller-Rabin前置知识:费马小定理\[a^{p-1}\equiv1\pmodp,p\is\prime\]二次探测(mod奇素数下1的二次剩余)\[x^2\equiv1\pmodp\Rightarrowx=1\or\p-1\]如果不是\(\bmod\)奇素数,二次剩余可能是更多的值如果把费马小定理反过来用
费马小定理,876. 快速幂求逆元
Landing_on_Mars
数论数学算法数论逆元
876.快速幂求逆元-AcWing题库给定n组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossible。注意:请返回在0∼p−1之间的逆元。乘法逆元的定义若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得a/b≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数
【古谷彻】算法模板(更新ing···)
古谷彻
算法c++学习算法竞赛
目录一、数学1、逆元(一)费马小定理/欧拉定理(快速幂)2、组合数(1)求组合数C(n,m)方法一:阶乘+逆元+快速幂求组合数方法二:记忆化搜索方法三:递推公式(2)组合数求概率3、高精度sqrt(1)二分法(2)递加递减4、快速幂5、欧拉函数方法一:埃氏筛方法二:欧拉筛6、线性筛7、质数判断8、欧拉常数9、线性基形式一:数组1、处理线性基2、最大异或和3、最小异或和形式二:容器二、数据结构1、并
java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
[逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。