- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 从零开始学RSA:低加密指数广播攻击
网络安全我来了
Crypto算法python网络安全
(10)低加密指数广播攻击如果选取的加密指数较低,并且使用了相同的加密指数给一个接受者的群发送相同的信息,那么可以进行广播攻击得到明文。适用范围:模数n、密文c不同,明文m、加密指数e相同。一般情况下,e=k(k是题目给出的n和c的组数)。例如:下面的就是e=k=3使用不同的模数n,相同的公钥指数e加密相同的信息。就会得到多个,将视为一个整体M,这就是典型的中国剩余定理适用情况。按照本文的中国剩余
- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 近世代数理论基础7:同余式·中国剩余定理
溺于恐
同余式·中国剩余定理同余式定义:给定整系数多项式,则称同余方程为模m的同余式,若,则称它为n次同余式若,满足,则,b也满足,因而称为该同余式的一个同余解定理:一次同余式,有解,若有解,则有个同余解证明:中国剩余定理定理:设,且两两互素,则同余式组,模有唯一同余解证明:
- python实现中国剩余定理
含泪进厂
python
中国剩余定理又称孙子定理,是数论中一个重要定理。最早可见于我国的数学著作《孙子算经》卷下“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。把这题转化成现代数学问题:求一个数x,该数除以3余2,除以5余3,除以7余2把以上问题转化为一般方程的形式根据中国剩余定理解如下其中python代码实现n=i
- 孙子定理和“物不知数”问题
软件技术爱好者
数学广角随笔数学
孙子定理和“物不知数”问题孙子定理,也称为中国剩余定理或中国余数定理。孙子定理是中国古代求解一次同余式组(见同余)的方法。此定理,在公元5-6世纪的中国南北朝时期的数学家孙子提出的“物不知数”问题可以被视为中国剩余定理的一个应用实例。《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除
- 笔记---中国剩余定理
Die love 6-feet-under
笔记算法c++
全程学自y总AcWing.204.表达整数的奇怪方式给定2n2n2n个整数aaa1,aaa2,…,aaan和mmm1,mmm2,…,mmmn,求一个最小的非负整数xxx,满足∀i∈[1,n],x≡m∀i∈[1,n],x≡m∀i∈[1,n],x≡mi(moda(moda(modai)))。输入格式第1行包含整数nnn。第2…nnn+1行:每iii+1行包含两个整数aaai和mmmi,数之间用空格隔开
- ACM必备知识
Element-YoNg
时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排序,外部排序)数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理)指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示)按位运算(and,or,xor,sh
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- C++ 数论相关题目 表达整数的奇怪方式(中国剩余定理)
伏城无嗔
数论力扣算法笔记c++算法
给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(modai)。输入格式第1行包含整数n。第2…n+1行:每i+1行包含两个整数ai和mi,数之间用空格隔开。输出格式输出最小非负整数x,如果x不存在,则输出−1。数据范围1≤ai≤231−1,0≤mi#includeusingnamespacestd;typedeflonglongLL
- 【数学】一元一次同余方程组、中国剩余定理(CRT)与扩展中国剩余定理(exCRT)
OIer-zyh
数学#数论c++OI数学算法数论
一元一次同余方程组形如{x≡a1(modm1)x≡a2(modm2) ⋮x≡an(modmn)\begin{cases}x\equiva_1\pmod{m_1}\\x\equiva_2\pmod{m_2}\\\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\vdots\\x\equiva_n\pmod{m_n}\end{cases}⎩⎨⎧x≡a1(modm1
- Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
- 数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 基于格理论来破解RSA公钥密码(1)
唠嗑!
格密码密码学网络安全
目录一.介绍二.RSA密码系统2.1生成公私钥2.2加密2.3解密三.中国剩余定理攻击低指数的RSA3.1介绍3.2中国剩余定理四.基于多项式的RSA加密五.小结一.介绍我们生活中常使用的网络浏览器,智能卡片都有RSA公钥密码的影子。从1977年,RSA密码系统提出,五十年来涌现出了大量的攻击算法。Hastad和Coppersmith创新性的用格密码理论来攻击RSA系统,尤其是公开指数较小的时候。
- 中国剩余定理的同态性质(CRT变换的同态性)
咸鱼菲菲
数论基本算法抽象代数同态加密
1、中国剩余定理简介(ChineseRemainderTheory,CRT)中国剩余定理是关于求解一元线性同余方程组的方法,用形式化的描述就是:m1,m2,mnm_1,m_2,m_nm1,m2,mn是两两互素的n个整数,有下面的同余方程组:{x≡a1mod m1x≡a2mod m2...x≡anmod mn(m1,m2,⋯ ,mn)两两互素\left\{\begin{array}{lr}x\
- ACM板子
GGood_Name
cocoamacosobjective-cc++
文章目录板子:初始化:快读:快速幂:GCD/LCM:组合数:欧拉筛:大整数质因数分解:分解质因数:求(1e12)内质数:KMP:最小生成树:最短路LCA查找最近祖先二分图匹配RMQ区间最小值:01字典树:字典树:线段树:最长上升子序列:最长公共子序列:01背包中国剩余定理模板*L**u**c**a**s*定理。扩展Lucas定理hash+二分求最长回文串**尼姆博弈模型**莫队算法权值线段树回文树
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 算法-大数相乘
Aberwang9157
java算法java
解决算法;*1.模拟小学乘法:最简单的乘法竖式手算的累加型;*2.分治乘法:最简单的是Karatsuba乘法,一般化以后有Toom-Cook乘法;*3.快速傅里叶变换FFT:(为了避免精度问题,可以改用快速数论变换FNTT),时间复杂度O(NlgNlglgN)。具体可参照Schönhage–Strassenalgorithm;*4.中国剩余定理:把每个数分解到一些互素的模上,然后每个同余方程对应乘
- 任意模数FTT
YiPeng_Deng
学习小计FFT和NTTfft任意模数fft常数优化
模板题luogu42459次DFT由于在一般的条件下值域大概在102310^{23}1023下,所以找到三个NTT模数,它们的乘积大于102310^{23}1023,求出三个模数下的答案,再用中国剩余定理把它们合并到一起,变成模三个数的乘积下的答案,这就是它的实际答案。一共需要9次DFT,常数比较小,但是9次实在是太慢了。三次变两次由于复数域的神奇性质,我们在FFT的时候可以将计算C(x)=A(x
- 算法学习总结
joker D888
算法与数据结构算法c++ACM数据结构
算法总结文章目录算法总结搜索遍历dfs树的深度树的重心图的连通块划分bfs双端队列bfsbfs图问题迭代加深双向搜索A*IDA*Morris遍历Manacher数论质数判断质数分解质因数埃氏筛法线性筛法约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法欧拉函数快速幂快速幂求逆元扩展欧几里得算法斐蜀定理扩展欧几里得算法线性同余方程中国剩余定理卡特兰数低阶数据结构链表邻接表AVL树单调
- 算法基础之表达整数的奇怪方式
阳光男孩01
算法数据结构图论c++
表达整数的奇怪方式中国剩余定理:求M=所有m之积然后Mi=M/mix=如下图满足要求扩展中国剩余定理找到x**使得xmodmi=ai**成立对于每两个式子都可以推出①式即用扩展欧几里得算法可以算出k1,-k2和m2–m1判无解:若**(m2–m1)%d!=0**说明该等式无解即原方程无解本题无解找到最小正整数解已知k1的通式(如下图代入原方程可证成立)则求最小正整数解只要%abs(a2/d)等效替
- 中国剩余定理CRT
2301_78981471
算法学习记录笔记算法
文章目录作用证明AcWing204.表达整数的奇怪方式CODE作用用于求模数两两互质的线性同余方程组,若不互质则不存在解。《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?这就是经典的剩余定理问题,也是我们小学题目:三个三个数余二,五个五个数余三,七个七个数余二,求这个数是几?{x≡2(mod3)x≡3(mod5)x≡2(mod7)\left\{\
- 算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
- AcWing-算法基础课总结
147qq.com
acm竞赛算法
本文是基于AcWing网站算法基础课刷题的一个总结第六讲贪心贪心第五讲动态规划背包问题各种类型的DP第四讲数学知识质数约数欧拉函数快速幂扩展欧几里得中国剩余定理高斯消元求组合数容斥原理博弈论第三讲搜索与图论DFS与BFS最短路—dijkstra(朴素做法和堆优化)拓扑排序Bellman_ford------有边数限制的最短路spfa------求最短路,判断是否有负环Floyd(多源最短路)最小生
- AcWing的算法基础课目录
greedy-hat
刷题mysql学习springboot
文章目录基础算法数据结构搜索与图论数学知识动态规划贪心时空复杂度分析基础算法排序二分高精度前缀和与差分双指针算法位运算离散化区间合并数据结构链表与邻接表:树与图的存储栈与队列:单调队列、单调栈kmpTrie并查集堆Hash表搜索与图论DFS与BFS树与图的遍历:拓扑排序最短路最小生成树二分图:染色法、匈牙利算法数学知识质数约数欧拉函数快速幂扩展欧几里得算法中国剩余定理高斯消元组合计数容斥原理简单博
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(