- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 群论学习笔记
_beginend
学习小记
文章目录群群和元的阶子群和子群的陪集群的同构群的阶与其元的阶之间的关系置换群轨道与稳定化子Burnside引理Polya定理Polya定理的生成函数形式群群(G,∗)(G,*)(G,∗)由非空集合GGG和GGG的一个代数运算∗*∗组成,且满足以下公理:1、1、1、封闭性:对∀a,b∈G\foralla,b\inG∀a,b∈G,有a∗b∈Ga*b\inGa∗b∈G2、2、2、结合律:对∀a,b,c∈
- NOIP复赛复习(一)常见问题与常用策略
迷蒙之雨
杂
数学类问题1.精度处理(高精度、实数处理、各种浮点类型处理方法)2.组合数学问题(斐波那契数列、第二类数、卡特兰数、Polya原理、排列组合计数、加法原理与乘法原理)3.进制问题(特定二进制串的统计、二分查找、利用二进制进行路径、状态描述、二进制转换)4.递推与递归关系(递推关系式、通项公式、数列、博弈问题)5.数位、数字、特定数值的查找、统计(数值处理、质因子分解、幂次分解、数值表达式、添加运算
- poj2409 Burnside引理 + Polya定理(圆)
暖昼氤氲
/*Time:2019.12.15Author:Goventype:Burnside引理+Polya定理(圆)ref:https://www.cnblogs.com/AKCqhzdy/p/7593704.htmlhttps://blog.csdn.net/lianai911/article/details/47804663*/#includeusingnamespacestd;intgcd(int
- 2019文献汇总 | 单细胞与病毒感染
生信宝典
我的单细胞测序project主要是做炎症相关的单细胞转录分析,在检索paper的过程中,发现有关单细胞测序和病毒相关的文献是很少的,大致统计一下也不过十几篇,追根究底可能有两个方面的原因:(1)我们做感染的还是很穷哒,科研界的基尼系数很高啊!(在此谢谢肿瘤学领域极力抬高了科研领域的GDP);(2)单细胞测序本身的限制性;虽然有些病毒,如流感病毒,它们的vmRNA也有尾部加polyA的特征,常规的s
- 2018SD省队集训R1 D3
wwyx2001
dp省队集训记忆化搜索群论DP
T1题解:首先你可以写一个n=L的暴力,这样可以得到20ptsPolya定理的应用。先来看Polya定理。Polya定理:设G={a1,a2,…,ag}是N个对象的置换群,用M种颜色给这N个对象着色,则不同的着色方案数为:|G|^(-1)*{M^c(a1)+M^c(a2)+…+M^c(ag)}。其中c(ai)为置换ai的循环节数,(i=1,2,…,g)。对于这道题,直接用Polya定理求解,找出所
- Burnside引理和Polya定理
肘子zhouzi
Burnside引理:Burnside引理是为了解决m种颜色给n个对象染色的计数问题。【例题1】如图1所示,2×2方格中每个格子可以选择染上2种颜色(红色或白色)。那么总共是2^4=16种情况。现在要问,如果旋转0度、90度、180度、270度后状态不变的方案算成同一种方案,问总共有多少种不同的方案。将每种旋转认为是一种"置换",定义为gi,则上述问题总共有4种置换,分别描述为:用D(gi)表示在
- Burnside引理和Polya定理学习笔记
zhouyuheng2003
OIBurnside引理Polya定理组合数学群论
前言求·······的方案数循环同构算一种一脸懵逼(于是我觉得系统的学一遍Burnside引理和Polya定理)正文置换置换的概念对于一个排列aia_iai我们想成iii输进去会出来一个aia_iai那么我们如果输入一个排列,将能得到一个排列就比如我们输入的排列是111到nnn有序的,那么这个置换就是(123⋅⋅⋅na1a2a3⋅⋅⋅an)\begin{pmatrix}1&2&3&
- 【组合数学】通俗解释 Burnside引理和Polya定理
李清焰
扫盲数学组合数学PolyaBurnside笔记扫盲
文章目录前言Burnside的数学定义:用例子解释Burnside用例子解释Polya定理参考资料前言对于图形来说,如果通过旋转,图像能达到其他图像的效果,这叫做本质上一样。Burnside的目的是,我们能有多少种排列方案,求的是一个方案的数量num。Burnside的数学定义:反正直接让我看这个定义…我是看不懂…所以还是直接上例子吧。用例子解释Burnside
- Burnside引理与Polya定理
Qingo呀
=====数论=====
大牛博客:https://blog.csdn.net/AgoniAngel/article/details/52261452Polya公式(优化过程):
- 测序原理笔记 RNA-seq 和WES--day 5
悦时光_
1,RNA-seq测试原理测序步骤,先去除保守的rRNA,→polyA尾的特性,用磁珠吸附→Mg镁离子溶液打断mRNA→随机引物变成双链合成第一条cDNA(由RNA变成单链DNA)→再合成第二条DNA(双链DNA)→用相应的酶切加上A,加上Y行接头(adaptor)主要应用:差异表达mRNA,可变剪切,融合基因,SNP,建库RNA降解评价,RNA的RIN(RNAintegritynumber)>8
- acm-Polya计数定理
&*^*&
数学组合计数acm竞赛算法
Polya定理目录轨道-稳定子定理Burnside引理polya引理轨道-稳定子定理对于一个置换群GGG,定义GGG作用于一个元素aaa代表取GGG中所有的置换对aaa作变换后能够得到的所有可能的结果构成的集合,这个集合中的所有元素也就构成了一个在GGG作用下形成的等价类。轨道-稳定子定理就是说对于任意一个元素aaa的等价类中元素个数×\times×对元素aaa施加GGG中的置换后元素aaa保持不
- circRNA对基因调控起到怎么样的作用?基因敲除细胞株来揭秘!
源井生物b
环状RNA(circularRNAs,circRNAs)是一类由mRNA前体(pre-mRNA)经反向剪接形成的共价闭合环状非编码RNA。CircRNA最早是在上世纪70年代在病毒中被发现,但是由于早期RNA文库制备广泛使用polyA富集的方式(circRNA没有游离的5’和3’末端),以及RNA-seq读数要求以线性方式与基因组对齐的计算算法,导致大量circRNA的信息被遗漏,使得人们一度认为
- GDKOI2023游记
dygxczn
其他
Day?本来想报pj的,被A诱骗,说pj、tg两个都报几率大,结果全机房都去tg了,我怀疑只要报了就给进。Day-5开始停课备战GDKOI。打了模拟赛。浙江省选模拟。T1扫描线。根本没学过,我赛时糊了个线段树,一度感觉能过,结果结束前10分钟发现有破绽。白打了!!!T2网络流。这个最小割很巧妙,赛时无从下手。T3毒瘤计数题,polya组合数甚至树的同构。ex得不得了。蒟蒻接下来几天估计要打暴力然后
- poj2154 Polya定理+欧拉函数
暖昼氤氲
/*Time:2019.12.15Author:Goventype:Polya定理+欧拉函数ref:[知识点]Burnside引理+Polya定理:https://blog.csdn.net/WhereIsHeroFrom/article/details/79631703https://blog.csdn.net/liangzhaoyang1/article/details/72639208htt
- PRO-seq数据分析
wangyunpeng_bio
分析流程数据分析
PRO-seq数据分析背景知识大多数RNA-seq都是研究不同条件下细胞内mRNA变化。除了基因的编码区(CDS)可以转录成mRNA,基因组上的其他区域也能不同程度地转录(例如polyA,下游区域以及Enhancer),Enhancer可以产生短的且不稳定的RNA来调控转录,而这种调控的错误会引发多种疾病,因此,理解这种调控机理十分重要,然而传统RNA-seq技术在检测这种不稳定的RNA方面效率很
- NOI2021信息竞赛学习笔记
andyc_03
线性代数图论算法
一.图论1.仙人掌问题(圆方树)2.矩阵树定理3.网络流4.基环树二、数据结构1.线段树2.左偏树3.树链剖分4.主席树5.树套树6.长链剖分7.LCT三、数学1.欧拉函数|(扩展)欧拉定理|欧拉反演2.线性筛3.莫比乌斯反演4.FFT&NTT5.生成函数6.多项式全家桶7.单位根反演8.FWT9.拉格朗日插值10.线性基11.burnside&polya四、字符串1.后缀数组2.后缀自动机3.序
- 全长转录组分析-小麦
郝永超M1racle
前言近期分析了一部分小麦的全长转录组数据,参考了网上许多流程,收获良多,在此记录一下全长转录组测序基于PacBio单分子实时测序技术(SMRTcell),凭借超长读长的优势,建库过程中无需打断RNA分子,直接对反转录的全长cDNA测序,得到从5’末端到3’PolyA尾的高质量全长转录本序列,可用来进行转录本鉴定、融合基因、可变剪切、精确地分析转录本的结构等分析。详见SMRTcell测序下机后经sm
- 2022-07-02 RNA-seq处理流程
Zheng_xy
对于RNA-seq实验与分析流程是三天前开始学习的,简单记录一下。RNA-seq实验可以捕获全部RNA(不区分类型),也可以根据成熟转录本尾部特异性polyA尾巴特异性选择mRNA。普通的RNA-seq是不能区分链的,也就是说我们不能知道转录本来自正链还是负链,但是通过dUTP的掺入,可用特定的酶将反转录合成的第二条cDNA链降解,这样就知道转录本来自于哪一条链,后续比对到参考基因的时要用特定的参
- PTA7-6 C语言多项式的加法,单链表phead的两种实现
程序员早早
PTA数据结构链表排序算法PTAC语言
题目C语言两种实现仍旧跟上一篇文章说明的一样,单链表的头节点有两种实现方式,一种是头节点保存数据,另一种是头节点作为哨兵只占位,head->next才是第一个有数据的节点。头节点保存数据//polyA和polyB多项式相加,每个输入分别有系数和指数,以0,0结束//相加规则,每个多项式按照指数从小到大展示,同指数的系数相加,系数为0则该项移除。//head为第一个有数节点#include#incl
- 怎样简单、靠谱、稳定地解决问题——《30天认知训练营》学习心得
践行致知
图片发自App今天分享的是财新网总编辑王烁在“得到”的专栏《30天认知训练营》:怎样才能达到任何目标。《怎样解题:数学思维的新方法》(HowtoSolveIt:ANewAspectofMathematicalMethod)。它出自大数学家波利亚(G.Polya)之手。波利亚提出了四步解题法:第一步,彻底理解问题为了确保真正理解问题,最好把问题用自己的语言换成各种形式反复重新表达。无论怎么重新表达,
- 2
Yilia30640
上面的四步解题法来自我今天推荐的《怎样解题:数学思维的新方法》(HowtoSolveIt:ANewAspectofMathematicalMethod)。它出自大数学家波利亚(G.Polya)之手。在成名之前,波利亚曾经是中学数学老师,学生当中有冯·诺伊曼。
- NGS二代测序技术与转化医学研究--2.RNA-seq部分
星尘_ec92
RNA-seq转录组测序与cfDNA体细胞突变检测相比,基因表达相关的RNA-seq转录组测序在常规的mRNA、非编码RNA(lncRNA、circRNA、microRNA/piRNA等)以及肿瘤融合基因鉴定方面应用较为成熟,业内价格透明且相当低廉。但不少转化医学项目往往选择传统的polyA富集建库,只拿到mRNA数据而丢掉了其它非编码RNA信息(常规的mRNA甚至单细胞RNA-seq已经发布有I
- 组合数学 排列组合问题 卡特兰数 母函数
~yue岳岳啊
数据结构
1.排列组合2.抽屉原理容斥原理错排问题3.卡特兰数4.母函数多重集的排列组合分拆数/整数拆分斐波那契数斯特林数贝尔数伯努利数康托展开Polya计数排列从n个不同元素中取出r(r≤n)个元素的所有排列的个数组合从n个不同元素中取出r(r≤n)个元素的所有组合的个数二项式定理在ACM竞赛中,我们常常需要计算方法一打表时间复杂度O(N*M)for(inti=0;i<=n;i++){c[i][0]=c[
- 宏转录组分析:SortMeRNA鉴定过滤rRNA
小白菜学生信
导读转录组测序一般期望得到的是mRNA的信息,但是总RNA当中绝大部分都是rRNA。rRNA的信息一般是无用的,所以需要去除总RNA中的rRNA,获得较纯的mRNA。真核生物成熟的mRNA一般带有polyA尾巴,因此可以使用oligodT富集mRNA间接去除rRNA。但是,原核生物的mRNA不具有polyA尾巴,因此只能选择rRNA直接去除的方法。去除rRNA可以是在建库时(使用化学试剂),也可以
- ACM中的【数学知识】之【组合数学】(一) Polya定理的简单理解 POJ 1286
under_sky_dxj
因为数学渣,Polya定理不是很清楚,但其实际操作大概如下。解释下上图。N个位置,K种颜色放置。x1,x2,x3,x4,……,xn(x1,x2,x3……xn)∈{1234……K}则放置总数为上图|G|是【所有的(被定义的)置换(也就是变化的方式)】的个数——被定义就是说,某变化为M,任意情况A经过变化M变为B,A和B算作同一种情况。k就是Kc(f)是【某种置换的循环节】:——这是什么意思的比如说3
- bzoj1004 [HNOI2008]Cards
aklm45097
php
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1004【题解】Burnside引理,考虑Polya原理的推导,由于循环节必须染相同的颜色,那么可以dp出方案。1#include2usingnamespacestd;34constintN=110;5intA,B,C,m,mod,n;6intp[N][N];7boolvis[N];8intw
- HDU 6427 Problem B. Beads(polya+数论+素因子分解Pollard-rho)
v5zsq
HDU数论ploya
Description用mm种颜色给一串长度为nn的项链染色,旋转和翻转视作一种方案,且颜色平移也视为一种方案,问染色方案数Input第一行一整数TT表示用例组数,每组用例输入两个整数n,mn,m(1≤T≤30,3≤n≤1018,2≤m≤1018,n,m/|998244353)(1≤T≤30,3≤n≤1018,2≤m≤1018,n,m⧸|998244353)Output输出染色方案数,结果模998
- F的ACM暑期集训计划
weixin_30512785
数据结构与算法
暑假的知识计划(补充中...)1.数论相关(7days)待完成多项式同余方程/高次同余方程/欧拉函数/克莱姆法则/高斯消元/莫比乌斯反演/伪素数判定/baby-step-gaint-step2.组合数学相关(7days)待完成容斥/生成排列组合/polya计数/burnside定理3.矩阵算法+FFT(2days)待完成strassen4.完成计算几何模板(7days)待完成圆/矩形/三角形(题太
- [luogu4128][shoi2006]有色图
zhouyuheng2003
OIPolya定理Burnside引理组合数学
前言计数题题目相关题目链接题目大意nnn个点的完全图,对边染色(颜色有mmm种),求本质不同的染色方案数,答案对ppp取模数据范围1≤n≤53,1≤m≤1000,1≤p≤1091\len\le53,1\lem\le1000,1\lep\le10^91≤n≤53,1≤m≤1000,1≤p≤109题解我们乍一看是染色问题,我们就想到了Polya定理l=1∣G∣∑ai∈Gkλ(ai)l=\frac{1}
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方