UVA 10820 Send a Table

题目链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1761

解题思路:

筛选法求欧拉函数

题意:输入n属于[1,50000],定义一个二元组(x,y),满足1<=x,y<=n , 且x和y互质 , 要求输出二元组的个数。注意(2,3),(3,2)算作两个答案,所以我们只要求出一组答案再乘以2即可
关键是怎么找出这个二元组,其实就是筛选法求欧拉函数
我们约定x<y且x与y互质,那么我们将y从1枚举到n,对于每个y,找出所有小于它并且与它互质的x的个数,这不就是求y的欧拉函数吗?而y从1到n,不就是求n以内所有数字的欧拉函数吗?
所以最后的答案,就是n以内每个数字的欧拉函数值的累加和*2-1,没什么减1,是因为一个特殊的数字1,1的欧拉函数值为1(它本身),在x2过程中算了两次(1,1)要减去一个。


欧拉函数的简介:

φ函数的值  通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
设n为正整数,以 φ(n)表示不超过n且与n互
素的正整数的个数,称为n的欧拉函数值,这里函数
φ:N→N,n→φ(n)称为欧拉函数。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。
证明:

设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知,
n= ∏p^(α(下标p))
p|n
则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p)
p|n p|n
例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24
与欧拉定理、费马小定理的关系
对任何两个互质的正整数a, m, m>=2有
a^φ(m)≡1(mod m)
即欧拉定理
当m是质数p时,此式则为:
a^(p-1)≡1(mod m)
即费马小定理。
编程实现:

欧拉函数和它本身不同质因数的关系:欧拉函数ψ(N)=N{∏p|N}(1-1/p)亦即:ψ(N)=
   
(P是数N的质因数)
如:
ψ(10)=10×(1-1/2)×(1-1/5)=4;
ψ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;
ψ(49)=49×(1-1/7)=
   
=42。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int N = 50000;
int phi[N+10];

int main(){
    memset(phi,0,sizeof(phi));
    phi[1] = 1;
    for(int i = 2; i <= N; i++){
        if(!phi[i]){
            for(int j = i; j <= N; j+=i){
                if(!phi[j])
                    phi[j] = j;
                phi[j] = phi[j]/i*(i-1);
            }
        }
    }
    int n;
    while(scanf("%d",&n),n){
        int ans = 0;
        for(int i = 1; i <= n; i++)
            ans += phi[i];
        ans = 2*ans-1;
        printf("%d\n",ans);
    }
    return 0;
}


你可能感兴趣的:(欧拉函数)