poj 3070(矩阵快速幂)

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9960   Accepted: 7103

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

Stanford Local 2006

题意:求第n个斐波那契数%10000

 

由于n比较大,故利用矩阵快速幂求解:[a b] * [ ] = [b a+b],可推知中间为2*2的矩阵:

 |0    1|

 |1    1|

将矩阵 [0 1] 乘其(n-1)次幂即可得到矩阵 [f[n-1] f[n]]。

#include<stdio.h>
#include<string.h>
struct Mat
{
    long long mat[5][5];
};

Mat operator * (Mat a, Mat b)
{
    Mat c;
    memset(c.mat, 0, sizeof(c.mat));
    for(int k=0; k<2; k++)
        for(int i=0; i<2; i++)
            for(int j=0; j<2; j++)
                c.mat[i][j] = (c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%10000;
    return c;
}

int main()
{
    int n;
    Mat a, res;

    while(~scanf("%d", &n),n+1)
    {
        if(n==0) {puts("0"); continue;}
        n--;
        for(int i=0; i<2; i++)
            for(int j=0; j<2; j++)
                res.mat[i][j] = (i==j);
        a.mat[1][1] = a.mat[0][1] = a.mat[1][0] = 1;
        a.mat[0][0] = 0;
        for(; n>0; n>>=1)
        {
            if(n & 1) res = res*a;
            a = a*a;
        }
        printf("%lld\n", res.mat[1][1]);
    }
    return 0;
}


你可能感兴趣的:(矩阵快速幂,递推)