UVA 11489 博弈思维题

http://vjudge.net/contest/view.action?cid=46225#problem/H

Two players, S and T, are playing a game where they make alternate moves. S plays first. 

In this game, they start with an integer N. In each move, a player removes one digit from the integer and passes the resulting number to the other player. The game continues in this fashion until a player finds he/she has no digit to remove when that player is declared as the loser.

With this restriction, it’s obvious that if the number of digits in N is odd then S wins otherwise T wins. To make the game more interesting, we apply one additional constraint. A player can remove a particular digit if the sum of digits of the resulting number is a multiple of 3 or there are no digits left.

Suppose N = 1234. S has 4 possible moves. That is, he can remove 1, 2, 3, or 4.  Of these, two of them are valid moves.

- Removal of 4 results in 123 and the sum of digits = 1 + 2 + 3 = 6; 6 is a multiple of 3.
- Removal of 1 results in 234 and the sum of digits = 2 + 3 + 4 = 9; 9 is a multiple of 3.
The other two moves are invalid.

If both players play perfectly, who wins?

Input
The first line of input is an integer T(T<60) that determines the number of test cases. Each case is a line that contains a positive integer NN has at most 1000 digits and does not contain any zeros.

Output
For each case, output the case number starting from 1. If S wins then output ‘S’ otherwise output ‘T’.

Sample Input                             Output for Sample Input

3
4
33
771

Case 1: S
Case 2: T
Case 3: T


两个人取数,规则是每当一个人取过之后要么没有数了,要么剩下的数的和为3的倍数,两个人都采取最优的策略。

当n=1先手胜。n>1时,第一个人取候剩下的数是3的倍数,那么第二人去这能取走是三的倍数的一个数,否则无法保证剩下的数是三的倍数。那么,问题就转化成了三的倍数的数的数目。如果第一个人未取时恰好是三的倍数,那么,三的倍数的数个数为奇数就是后手胜,反之先手胜。若第一个人未取时不是三的倍数,那么,三的倍数的数个数为奇数就是先手胜,反之后手胜。

代码实现:

#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
char a[10005];
int main()
{
    int T,sum1,count1;
    int tt=1;
    char ans;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%s",a);
        int n=strlen(a);
        int count=0;
        int sum=0;
        ans='T';
        for(int i=0;i<n;i++)
        {
            count+=a[i]-'0';
            if((a[i]-'0')%3==0)
                sum++;
        }
        for(int i=0;i<n;i++)
        {
            count1=count-(a[i]-'0');//判断第一个取走哪一个数剩下的满足条件
            sum1=sum;
            if(count1%3==0)
            {
                if((a[i]-'0')%3==0)//第一个取走的是3的倍数
                    sum1--;
                if(sum1%2==0)
                {
                    ans='S';
                    break;
                }
            }
        }
        printf("Case %d: %c\n",tt++,ans);
    }
    return 0;
}


你可能感兴趣的:(UVA 11489 博弈思维题)