hdu4059容斥原理

求1-n中与n互质的数的4次方之和

import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.ArrayList;
import java.util.StringTokenizer;

public class Main {

    public static void main(String[] args) throws IOException {
        StreamTokenizer cin = new StreamTokenizer(new BufferedInputStream(
                System.in));
        InputReader in = new InputReader(System.in);
        PrintWriter out = new PrintWriter(System.out);

        int t = in.nextInt();
        for (int i = 1; i <= t; i++) {
            // out.print("Case " + i + ": ");
            new Task().solve(in, out);
        }

        out.flush();

    }

}

class Task {
    static long MOD = 1000000007L;
    static int N = 10000;
    static boolean[] vis = new boolean[N + 1];
    static int[] prime = new int[N + 1];
    static int pid = 0;

    static {
        for (int i = 2; i <= N; i++) {
            if (!vis[i])
                prime[pid++] = i;
            for (int j = 0; j < pid && i * prime[j] <= N; j++) {
                vis[j] = true;
                if (i % prime[j] == 0)
                    break;
            }
        }
    }

    ArrayList<Integer> factor = new ArrayList<Integer>();
    long n;

    static long pow(long x, int y) {
        long s = 1;
        for (; y > 0; y >>= 1) {
            if ((y & 1) > 0) {
                s = s * x % MOD;
            }
            x = x * x % MOD;
        }
        return s;
    }

    static long thirty = pow(30L, (int) MOD - 2);

    long sigmasum4(long k) {
        long sum = k * (k + 1) % MOD;
        long t = (6L * pow(k, 3) % MOD + 9L * pow(k, 2) % MOD) % MOD;
        t = (t + k - 1) % MOD;
        t = (t + MOD) % MOD;
        sum = sum * t % MOD;
        sum = sum * thirty % MOD;
        return sum;
    }

    long answer() {
        long ans = sigmasum4(n);
        int m = factor.size();
        int limit = 1 << m;
        for (int i = 1; i < limit; i++) {
            int k = 0;
            long val = 1;
            for (int j = 0; j < m; j++) {
                if ((i & (1 << j)) > 0) {
                    k++;
                    val *= factor.get(j);
                }
            }
            long sum = pow(val, 4) * sigmasum4(n / val) % MOD;
            if ((k & 1) > 0)
                ans = ((ans - sum) % MOD + MOD) % MOD;
            else
                ans = (ans + sum) % MOD;
        }
        return ans;
    }

    public void solve(InputReader in, PrintWriter out) throws IOException {
        n = in.nextLong();
        long m = n;
        for (int i = 0; i < pid && prime[i] * prime[i] <= m; i++) {
            if (m % prime[i] == 0) {
                while (m % prime[i] == 0)
                    m /= prime[i];
                factor.add(prime[i]);
            }
        }
        if (m != 1)
            factor.add((int) m);

        out.println(answer());
    }

}

class InputReader {
    public BufferedReader reader;
    public StringTokenizer tokenizer;

    public InputReader(InputStream stream) {
        reader = new BufferedReader(new InputStreamReader(stream), 32768);
        tokenizer = null;
    }

    public String next() {
        while (tokenizer == null || !tokenizer.hasMoreTokens()) {
            try {
                tokenizer = new StringTokenizer(reader.readLine());
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        }
        return tokenizer.nextToken();
    }

    public int nextInt() {
        return Integer.parseInt(next());
    }

    public long nextLong() {
        return Long.parseLong(next());
    }

    public double nextDouble() {
        return Double.parseDouble(next());
    }

}

你可能感兴趣的:(hdu4059容斥原理)