完全剩余系我们定义ai(1≤i≤n)a_i(1\lei\len)ai(1≤i≤n)为模mmm的完全剩余系当且仅当对于∀1≤i,j≤n\forall1\lei,j\len∀1≤i,j≤n且i≠ji\neji=j,满足ai≢aj(modm)a_i\not\equiva_j\pmodmai≡aj(modm),对于∀0≤i
数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
数论-乘法逆元【裴蜀定理+欧拉定理/费马小定理】
舍舍发抖
数论算法
具体逆元相关看这个博客,更详细裴蜀定理定义:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。(根据拓展欧几里得定理得出ax+by=gcd(a,b))这篇博客提到拓展欧几里的公式及推导这篇也参考一下一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1证明这里就不详细说了,参考博客:http
费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
乘法逆元())
哑巴湖大水怪1
算法
时间复杂度比用费马小定理高,小费马是O(log(p))O(log(p)).但是,小费马要求p是质数,而欧拉定理仅仅要求a,p互质。另外一点就是,用扩欧做得话,时间复杂度也是O(log(p))O(log(p)),且也是要求a,p互质就可以。综合看,扩欧是最优选择。快速幂求逆元时p要求为质数,而扩展欧几里得只要两者互质
【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
【算法基础 & 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)
为梦而生~
基础算法算法acm蓝桥杯数学逆元快速幂
文章目录为什么需要逆元逆元的概念1.单位元2.逆元3.模乘的单位元4.模乘的逆元开始求逆元1.扩展欧几里得定理2.费马小定理原文链接为什么需要逆元首先,在算法竞赛中,很多情况下会遇到数值很大的数据,这个时候,题目往往会让我们对某个数去摸,来控制数据范围。在±*运算中,我们可以对每个数单独取模,然后再对运算之后的数取模。但是除法比较特殊,例如:(40÷5)mod10≠((40mod10)÷(5mod
C语言--质数算法和最大公约数算法
何浩钧
算法c语言数据结构
文章目录1.在C语言中,判断质数的常见算法有以下几种:1.1.试除法(暴力算法):1.2.优化试除法:1.3.埃拉托色尼筛法:1.4.米勒-拉宾素性检验:1.5.线性筛法:1.6.费马小定理:1.7.素性检验:2.在C语言中,求两个数的最大公约数的常见算法有以下几种:2.1.辗转相减法2.2.辗转相除法2.2.1.迭代实现:2.2.2.递归实现:2.3.`Stein`算法2.4.`Lehmer`算
欧拉函数算法总结
ykycode
经典算法总结数论算法欧拉函数数学数论线性筛法欧拉定理费马小定理
知识概览欧拉函数为1~n中与n互质的数的个数。假设一个数N分解质因数后的结果为则欧拉函数这可以用容斥原理来证明。欧拉函数的应用欧拉定理:若a与n互质,则。费马小定理:欧拉定理中的n为质数p时,可以得到若a与p互质,则。例题展示欧拉函数题目链接活动-AcWing系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www.acwing.com/problem
费马小定理(求逆元)
Zqchang
#蓝桥杯c++
首先解释一下什么是逆元若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得a/b≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数时,bm−2b^{m-2}bm−2即为b的乘法逆元。然后我们就会发现,,好家伙,这定义真难懂,然后我们用人话通俗的解释一下紧接着我们来进行一些推导这就是一般的利用快速
算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
同余-费马小定理-乘法逆元与线性同余方程
litian355
数学相关算法
update1:初等数论部分(是对下面拓展欧几里得算法的铺垫):update2:由于第一开始学习理解不够深入,出现众多错误,现在看来真是误人子弟(实在太烂了),现在修改了一些错误,同时润滑了一下语言。线性方程ax+by=gcd(a,b)的解:假设特解(x0,y0)是方程组的一组解,d=gcd(a,b),那么通解就是x=x0+b/d*k,y=y0-a/d*k;例如10x+35y=5,的一组特解(-3
Miller_Rabin (米勒-拉宾) 素性测试
weixin_33845477
c/c++python
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解。借着学习《信息安全数学基础》将素性这一判定方法学习一遍。首先证明一下费马小定理。若p为素数,且gcd(a,p)=1,则有a^(p-1)=1(modp)基于以下定理若(a,p)=1,{x|(x,p)=1}为模p下的一个完全剩余系,则{ax|(x,p)=1}也为模p下的一个完全剩余系。又{0,1,2,...p-1}为模p下一个剩余系因此有,
米勒-拉宾素数检测法(判断一个极大的数是否为质数)——算法解析
风中的微尘
数学算法
一、算法简介在算法竞赛中,我们时常会遇到需要判断一个数是否为质数的问题。我们常常利用筛法来解决这个问题,但是当需要判断的数变得很大时,筛法已经无法满足我们的需求。于是我们采用了一个新的方法:Miller-Rabin素数检测。二、算法分析1.前置知识(1)费马小定理由费马小定理可知,若ppp为质数且aaa不是ppp的倍数,ap−1≡1(modp)a^{p-1}\equiv1(mod\p)ap−1≡1
米勒-拉宾(MillerRabbin)素性测试算法
GZkx
算法题
原创滴博客~https://www.cnblogs.com/precious-ZPF/p/9481599.html小编赶紧摘过来的,多看几遍向银家多学习学习QAQ首先,在了解米勒-拉宾素性测试之前,我们要先了解费马小定理。关于费马小定理就不再细说原理和证明了,应用非常广泛。费马小定理中说若p是质数则有a的(p-1)次方在(modp)的情况下恒等于1数学表达式--->a^(p-1)≡1(modp)然
费马素性测试和米勒—拉宾素性测试
hexianhao
数学数学
chapter1Fermat'slittletheorem费马小定理费马小定理说的是:如果p是一个素数,那么对于任意一个整数a,ap−a能被p整除,也可以用模运算表示如下:(p是素数,a是整数)这个定理又如下变式:如果p是一个素数,且整数a与p互素,那么ap−1−1可以被p整除,用模运算表示如下(p是素数,a是整数,a与p互素)、还有一种表述是:如果p是一个素数,a是一个整数且a不包含因数p,那么
一张图全解组合数计算
学数学的懒哥
算法学习分享算法python蓝桥杯
废话不多数直接上图一、组合数模板1#c[a][b]表示从a个糖果中选b个的方案foriinrange(N):forjinrange(i+1):ifj==0:c[i][j]=1else:c[i][j]=(c[i-1][j]+c[i-1][j-1])%p二、组合数模板2#首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]#如果取模的数是质数,可以用费马小定理求逆元d
RSA加密算法
西电卢本伟
密码学算法
文章目录什么是RSA一些废话安全性RSA算法参数参数解释加密算法解密算法生成密钥对例子常见大整数N的分解方法逆元定义如何求解费马小定理扩展欧几里得中国剩余定理(CRT)加速RSA算法CRT简介降N降d解密什么是RSA一些废话RSA是一种公钥密码算法,它的名字是由它的三位开发者,即RonRivest、AdiShamir和LeonardAdleman的姓氏的首字母组成的。RSA可以被用于公钥密码和数字
高中奥数 2021-07-29
天目春辉
2021-07-28-01(来源:数学奥林匹克小丛书第二版高中卷数论余红兵几个著名的数论定理P045例1)设是给定的素数.证明:数列中有无穷多个项被整除.证明时结论显然成立.设,则由费马小定理得,从而对任意正整数有.(1)我们取,则由(1),得.因此,若,则被整除(为任意正整数),故数列中有无穷多项被力整除.2021-07-28-02(来源:数学奥林匹克小丛书第二版高中卷数论余红兵几个著名的数论定
数论ex
weixin_30483495
数论ex数学学得太差了补补知识点or复习Miller-Rabin和PollardRhoMiller-Rabin前置知识:费马小定理\[a^{p-1}\equiv1\pmodp,p\is\prime\]二次探测(mod奇素数下1的二次剩余)\[x^2\equiv1\pmodp\Rightarrowx=1\or\p-1\]如果不是\(\bmod\)奇素数,二次剩余可能是更多的值如果把费马小定理反过来用
费马小定理,876. 快速幂求逆元
Landing_on_Mars
数论数学算法数论逆元
876.快速幂求逆元-AcWing题库给定n组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossible。注意:请返回在0∼p−1之间的逆元。乘法逆元的定义若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得a/b≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数
【古谷彻】算法模板(更新ing···)
古谷彻
算法c++学习算法竞赛
目录一、数学1、逆元(一)费马小定理/欧拉定理(快速幂)2、组合数(1)求组合数C(n,m)方法一:阶乘+逆元+快速幂求组合数方法二:记忆化搜索方法三:递推公式(2)组合数求概率3、高精度sqrt(1)二分法(2)递加递减4、快速幂5、欧拉函数方法一:埃氏筛方法二:欧拉筛6、线性筛7、质数判断8、欧拉常数9、线性基形式一:数组1、处理线性基2、最大异或和3、最小异或和形式二:容器二、数据结构1、并
Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
[毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st