- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- 数论-乘法逆元【裴蜀定理+欧拉定理/费马小定理】
舍舍发抖
数论算法
具体逆元相关看这个博客,更详细裴蜀定理定义:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。(根据拓展欧几里得定理得出ax+by=gcd(a,b))这篇博客提到拓展欧几里的公式及推导这篇也参考一下一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1证明这里就不详细说了,参考博客:http
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 拓展欧几里得和小费马定理求逆元以及推导(学习总结)
无_问
数论学习gcd
相关概念引入:逆元:假如ax≡1(modm)则称a关于1模m的逆元为x。当然了x有解的前提是gcd(a,m)=1。小费马定理:p为质数,ap≡a(modp),若gcd(a,p)=1,则a(p-1)≡1(modp)-------a*a(p-2)≡1(modp)所以a(p-2)为a的逆元;结合快速幂求a(p-2)longlongquick_pow(inta,intb){longlongsum=1;wh
- 大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
- 【算法总结】欧几里得算法与拓展欧几里得算法 小结
荷叶田田_
学习笔记与用法总结
拓展欧几里得算法1、欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}2、拓展的欧几里德算法:对于不完全为0的非负整数a,b,gcd(a,b)表示a,b的最大公约数,必然存在整数对x,y,使得gcd(a,b)=ax+by。intgcd(inta,intb,int&x,int&y){if(b==0){
- 《洛谷深入浅出进阶篇》 欧几里得算法,裴蜀定理,拓展欧几里得算法————洛谷P1516 青蛙的约会
louisdlee.
洛谷深入浅出进阶篇算法数论c++gcd拓展欧几里得洛谷深入浅出进阶篇
本文章内容:欧几里得算法:gcd(a,b)=gcd(b,a%b)由于篇幅问题,在这里就不加以证明,可以上b站自己搜一下。由欧几里得算法我们可以很清楚的知道,a,b的最大公约数,等于b,a%b的最大公约数裴蜀定理对于任意一对整数a,b,存在整数对(x,y)使不定方程ax+by=gcd(a,b)有解。由裴蜀定理引出的定理:若对于任意一对整数a,b,存在整数对(x,y)使不定方程ax+by=c有解,那么
- 算法基础课-数学知识
Andantex
ACwing算法课笔记算法
数学知识第四章数学知识数论质数约数欧拉函数欧拉定理与费马小定理拓展欧几里得定理裴蜀定理中国剩余定理快速幂高斯消元求组合数卡特兰数容斥原理博弈论Nim游戏SG函数第四章数学知识数论质数质数判定:试除法,枚举时只枚举i≤nii\leq\frac{n}{i}i≤in即可(这里是防止整数溢出所以没有算平方)分解质因数:试除法首先nnn中至多只包含一个大于n\sqrtnn的质因子所以仍然可以枚举i≤nii\
- 同余-费马小定理-乘法逆元与线性同余方程
litian355
数学相关算法
update1:初等数论部分(是对下面拓展欧几里得算法的铺垫):update2:由于第一开始学习理解不够深入,出现众多错误,现在看来真是误人子弟(实在太烂了),现在修改了一些错误,同时润滑了一下语言。线性方程ax+by=gcd(a,b)的解:假设特解(x0,y0)是方程组的一组解,d=gcd(a,b),那么通解就是x=x0+b/d*k,y=y0-a/d*k;例如10x+35y=5,的一组特解(-3
- RSA 加密算法在C++中的实现 面向初学者(附代码)
EUREKA-X
c++算法密码学网络安全
概述博文的一,二部分为基础知识的铺垫。分别从密码学,数论两个方面为理解RSA算法做好了准备。第三部分是对RSA加密过程的具体介绍,主要涉及其密钥对(key-pair)的获取。前三个部分与编程实践无关,可以当作独立的关于RSA加密算法的介绍。第四部分开始介绍在编程层面实现RSA算法的基础知识,主要涉及一些算法,如拓展欧几里得算法,米勒-拉宾素性检验算法,是为C++中实现RSA加密所作的铺垫。第五部分
- 裴蜀定理-拓展欧几里得算法--夏令营
yyt_cdeyyds
算法
题目知识点1.裴蜀定理:欧几里得算法=gcd=辗转相除法拓展欧几里得算法=exgcd=裴蜀定理2.证明:3..代码:intexgcd(inta,intb,int&x,int&y){if(!b){x=1,y=0;returna;}intd=exgcd(b,a%b,y,x);y-=a/b*x;returnd;}答案#include#include#includeusingnamespacestd;in
- CCPC桂林E - Draw a triangle
Knight840
c++算法开发语言
题意:给出两点,求在网格点上找第三点满足构成三角形正数面积最小思路:两个向量(a,b),(x,y)面积表达(-bx+ay)/2,则题意变为求(-bx+ay)表达式的最小解,斐蜀定理可知,一个二元一次方程的最小解c为形如ax+by这样的式子中的a,b的最大公因数的倍数,所以只需根据拓展欧几里得法求x,y/*题意:给出两点,求在网格点上找第三点满足构成三角形正数面积最小思路:两个向量(a,b),(x,
- Python算法设计 - 拓展欧几里得算法
小鸿的摸鱼日常
python算法设计算法python
目录一、拓展欧几里得算法二、Python算法实现三、作者Info一、拓展欧几里得算法扩展欧几里德算法是数论中最经典的算法之一,其目的用来解决不定方程。用来在已知a,b求解一组x,y,使它们满足贝祖等式:ax+by=GCD(a,b)什么是不定方程?不定方程(丢番图方程)是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等)的方程或方程组。二、Python算法实现defg
- 【总结】不定方程ax+by=c的解
仰望星空的蚂蚁
先解方程ax+by=gcd(a,b)的特解,再还原到原方程,写出通解方法:拓展欧几里得(递归降系数)首先对于ax+by=gcd(a,b),当b=0时,x=1,y=0是一组解(递归算法出口)对于一般情况:ax1+by1=gcd(a,b)bx2+(a%b)y2=gcd(b,a%b)系数a,b降低了(最终a%b为0),注意观察x1,y1,x2,y2数量关系(假定求得了x2,y2)因为gcd(a,b)=g
- 拓展欧几里得证明
不给赞就别想跑哼
看了许久书终于从似懂非懂走了出来设ax+by=gcd(a,b),解出符合条件的x,y;当b=0时,很显然有一组必然解,x=1,y=0,即1a+00=gcd(a,b)=a;即我们讨论b!=0的情况;ax+by=gcd(a,b)=gcd(b,a%b);令一组解x1,y1使得x1b+y1(a%b)=gcd(b,a%b)=gcd(a,b)=ax+by;a/b=k…r,k=a/b下取整,所以a%b=a-(a
- 乘法逆元 +数论分块 +平方和公式
Star_.
蓝桥杯java开发语言
年后准备学习啦,开学还得准备考试。乘法逆元:因为涉及到除法,所以取余这个操作就错误。所以如果我们要求(a/b)%mod,我们可以假设(a/b)%mod=a*c%mod那么c就是b的逆元。怎么求逆元呢,其实有很多方法,这里我先学习了两种比较常用的方法。逆元的定义给定正整数a,p,如果有,且a与p互质,则称x的最小正整数解为a模p的逆元。方法一:拓展欧几里得算法不要求模p为质数,所以我一般会用这种方法
- RSA加密算法 python实现
特务别iDD
python
基于python实现rsa加密算法,并生成可执行程序exeimportPySimpleGUIassg#拓展欧几里得算法求最大公约数defex_gcd(a,b,arr):ifb==0:arr[0]=1arr[1]=0returnar=ex_gcd(b,a%b,arr)tmp=arr[0]arr[0]=arr[1]arr[1]=tmp-int(a/b)*arr[1]returnr#将最大公因数回代辗转
- 简述逆元+两种算法
circoding
2019hpu暑期集训逆元
逆元:用于计算式子(a/b)modp,当b十分大的时候,可以利用b的逆元inv(b),原式即为(a*inv(b)modp)。一个类似于b的倒数的家伙,要注意的是b的逆元并不唯一,而且要说成是b模p的情况下逆元是多少。逆元不是一定存在的,必须是b与p互质(两者公因数仅有1)才存在逆元。求解逆元的方法,目前博主学了两个:利用费马小定理快速幂求逆元。利用拓展欧几里得算法求逆元。1.利用费马小定理求解逆元
- 组合数取模算法(杨辉三角+拓展欧几里得求逆元+费马小定理求逆元+阶乘逆元递推)
retrogogogo
ACM数论算法组合数拓展欧几里得快速幂费马小定理
组合数算法简述:杨辉三角形+拓展欧几里得求逆元+费马小定理求逆元+阶乘逆元递推组合数基本公式杨辉三角形法逆元法-1.拓展欧几里得求逆元-2.费马小定理求逆元-3.阶乘逆元递推-4.逆元法组合数取模总结模板前言: 在很多问题中都需要计算组合数,在小规模计算中我们可以直接使用组合数公式稍加算法优化进行计算,但在大规模取模计算时往往需要更加快速的算法,接下来主要介绍杨辉三角形法、逆元法(拓欧和费马小定
- 数论—模运算的逆元
十甫Com
数论逆元模运算拓展欧几里德费马小定理
目录有关模运算定义运算规则逆元定义使用方法求逆元的方法枚举法拓展欧几里得(Extend-Eculid)费马小定理(Fermat'slittletheorem)注意有关模运算在信息学竞赛中,当答案过于庞大的时候,我们经常会使用到模运算(ModuloOperation)来缩小答案的范围,以便输出计算得出的答案。定义给定一个正整数p,任意一个整数n,那么一定存在等式:n=k*p+r;其中k、r是整数,且
- 深入浅出RSA在CTF中的攻击套路
CTF小白
CTF
0x01前言本文对RSA中常用的模逆运算、欧几里得、拓展欧几里得、中国剩余定理等算法不展开作详细介绍,仅对遇到的CTF题的攻击方式,以及使用到的这些算法的python实现进行介绍。目的是让大家能轻松解决RSA在CTF中的套路题目。0x02RSA介绍介绍首先,我这边就不放冗长的百度百科的东西了,我概括一下我自己对RSA的看法。RSA是一种算法,并且广泛应用于现代,用于保密通信。RSA算法涉及三个参数
- 2021-11-13(每周总结)
killer_queen4804
c++笔记算法动态规划算法数学
这一星期做了点背包,主要还是学了下数论gcd,lcm,拓展欧几里得,逆元(没大做题目,只是看了遍,也没有明白书上的例题是怎样利用逆元的),素数和素数筛选的方法,做的题还是不够多,只是对素数筛有点印象,还看了点组合数学,刚开了个头luogup4138排序就按钩数从大到小排,之后就是01背包了,把挂钩数作为容量,并且如果容量小于a[i]的话,就强行认为是1,转移方程为dp[i][j]=max(dp[i
- ACM数学题目2 同余方程(拓展欧几里得算法)
大金枪鱼罐头
ACM数学题目acm竞赛算法数学递归算法c++
声明:题目来源:https://www.luogu.com.cn/problem/P1082题目描述求关于xxx的同余方程ax≡1modbax\equiv1\textrm{mod}bax≡1modb的最小正整数解。输入格式一行,包含两个正整数a,ba,ba,b用一个空格隔开。输出格式一个正整数x0x_0x0,即最小正整数解。输入数据保证一定有解。输入输出样例输入#1310输出#17说明/提示【数据
- 复习小结--小康迷糊了--21.4.21
小康迷糊了
算法
小康迷糊了的复习小结1.字典树2.线段树3.KMP算法4.字符串哈希5.二分图匹配6.最长递增子序列7.最长公共子串/子序列8.拓展欧几里得9.快速幂10.组合数学问题(卡特兰数)11.树的直径12.最短路问题13.最小生成树14.并查集15.欧拉回路16.连通块问题17.多源bfs问题18.差分,二分19.前缀和1.字典树模板#includeusingnamespacestd;constintN
- 密码学期末计算题复习
带问号的小朋友
密码学密码学算法线性代数矩阵
主要三大块目录1.古典密码移位密码:代换密码欧拉函数:乘法逆元用拓展欧几里得求解详细过程:群Zm内所有元素关于模26的乘法逆元如下:仿射密码:希尔密码:定义在Zm上的矩阵求逆:2.对称密码体制AES加密的工作模式3.非对称密码体制拓展欧几里得求解同余方程组本原元求解RSA算法过程ElGamal加密算法1.古典密码移位密码:E(x)=(x+K)mod26D(x)=(x-K)mod26代换密码是指先建
- ACM Weekly 4(待修改)
C_eeking
ACM训练
ACMWeekly4涉及的知识点GCD与LCMGCD和LCM质因数分解与互质拓展欧几里得算法拓展欧几里得应用算数基本定理及其推论算数基本定理推论1:求约数个数推论2:求约数之和欧拉函数同余费马小定理欧拉定理乘法逆元难题解析拓展ICPC线上测试赛中国剩余定理大数小数定理PollardRho算法涉及的知识点第四周练习主要涉及GCD与LCM(欧几里得、质因数分解、互质的概念)、算数基本定理及其推论、,欧
- Strange Optimization
xzx9
数论牛客
题目意思是要求在t固定的情况下,i,j任意取值,求得f(t)的所有最小值中的最大值。对于i/n-j/m而言,根据拓展欧几里得的有解的条件,那么它可以表示gcd(n,m)/(nm)的任意倍数,那么当t是固定的时,t到和它最近的两个gcd(n,m)/(nm)的倍数之间的距离中的最小值必然小于等于gcd(n,m)/2*(nm),所以,要求最大的f(t),那么其值应该为gcd(n,m)/2(nm),若分子
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理