- 数论——欧几里得算法
NarutoTime
数论算法c++数据结构c语言
1.欧几里得简介 欧几里得(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。2.欧几里得算法欧几里得算法用于:求解a和b的最大公约数。最大公约数英文为:Gre
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 一些简单却精妙的算法
写代码的大学生
算法
文章目录1.树状数组2.红黑树3.星星打分4.欧几里得算法5.快速幂6.并查集在编程的世界里,简洁的代码往往隐藏着深邃的智慧。一起来看看那些看似简单,实则精妙绝伦的代码片段,体会编程语言的优雅与力量。1.树状数组intlowbit(intx){returnx&-x;}树状数组里的这个,太精妙了,树状数组使区间求和复杂度降低到了log(n),发明这段代码的人一定是个天才,而这个lowbit恰恰是最精
- 数学知识——欧拉函数、快速幂、扩展欧几里得算法
up-to-star
acwing算法基础课学习笔记
欧拉函数欧拉函数定义为ϕ(n)=1−n中与n互质的个数\phi(n)=1-n中与n互质的个数ϕ(n)=1−n中与n互质的个数,互质就是最大公约数是1。欧拉函数求解公式:将n分解质因数:n=p1a1+p2a2+...+pkakn=p_1^{a1}+p_2^{a2}+...+p_k^{ak}n=p1a1+p2a2+...+pkak,则ϕ(n)=n∗(1−1p1)∗(1−1p2)∗.....∗(1−1p
- OJ_求最大公约数和最大公倍数
Listennnn
数据结构与算法算法c语言
欧几里得算法(辗转相除法)求最大公约数这个算法的原理基于以下定理:两个整数的最大公约数等于其中较小的数和两数相除余数的最大公约数#include//GreatestCommonDivisor,简称GCD#define_CRT_SECURE_NO_WARNINGS#include//求最大公约数的函数intgcd(inta,intb){//当b为0时,a就是最大公约数if(b==0){returna
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- 【数论】exgcd 扩展欧几里得算法
Texcavator
数论算法
参考:exgcd详解-zzt1208-博客园(cnblogs.com)exgcd(扩展欧几里得算法),用来求形如ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)(a,ba,ba,b为常数)的方程的一组整数解。(如果不确定等号右边是不是gcd,可以先当做gcd,求出来之后验证,是的话就是解,不是的话就不是解)推导见上面的链接,这篇只放个板子codeintexgcd
- 备战蓝桥杯---数学基础3
cocoack
蓝桥杯算法数学c++
本专题主要围绕同余来讲:下面介绍一下基本概念与定理:下面给出解这方程的一个例子:下面是用代码实现扩展欧几里得算法:#includeusingnamespacestd;intgcd(inta,intb,int&x,int&y){if(b==0){x=1;y=0;returna;}intd=gcd(b,a%b,y,x);y=y-b/a*x;returnd;}下面我们引进二元一次不定方程的通解:
- C语言求最大公约数
考研势在必行
C语言题目c语言开发语言考研算法数据结构
最大公约数是两个或多个整数共有约数中最大的一个,换句话说,它是能同时整除这些数的最大的正整数。一般来说,求最大公约数的最广泛的方法是:辗转相除法辗转相除法:辗转相除法,也被称为欧几里得算法,该算法基于这样一个原理:两个整数的最大公约数等于其中较小的数和两数的差(或余数)的最大公约数。该算法的具体操作如下:1.将两个数中的较大数除以较小数,得到余数。2.然后将较小数和上一步得到的余数作为新的两个数,
- 欧几里得算法(辗转相乘法 )计算两个整数的最大公因数
陇院第一Sweet Baby
算法数据结构
#include//欧几里得算法:辗转相乘法//计算两个整数的最大公因数intmain(){intm,n,r;scanf("%d%d",&m,&n);printf("%d和%d的最大公因子是\n",m,n);while(n!=0){r=m%n;m=n;n=r;}printf("%d\n",m);returnm;}
- 逆元 与 扩展欧几里得(超级详细,c++)
海风许愿
Acm算法c++c++开发语言算法
逆元与扩展欧几里得算法(veryimportant)^-^点个赞再走吧~~^-^点个赞再走吧~~^-^点个赞再走吧~~欧几里得定理:给定任意a,b,一定存在x,y使得ax+by=gcd(a,b)公式:ax+by=gcd(a,b);1)利用欧几里得的过程给定n,对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai*xi+bi*yi=gcd(ai,bi)推导:ax+by=d=>bx+(a%
- 数论 - 约数基础 【 试除法求所有约数 + 约数个数和约数之和 + 欧几里得算法-求解最大公约数 】
林小鹿@
算法笔记约数欧几里得约数之和
数论—约数基础1.约数定义约数,又称因数。整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。2.试除法求所有约数vectorget_divisors(in
- 扩展欧几里得
云儿乱飘
数学知识数论
877.扩展欧几里得算法-AcWing题库#include#include#include#include#include#include#include#include#include#include#include#include#include#include#includeusingnamespacestd;#definelllonglong#definePIIpair#defineTUP
- 读《编程的数学原理》
FrankYang6666
CS数学数学计算机
读《编程的数学原理》读书目标计算机程序其实就是一个形式系统算法就是数学掌握编程范式组合与抽象集合与逻辑函数与关系组合与时序数理逻辑五个部分:逻辑演算、证明论、公理集合论、递归论、模型论第一章自然数几何原本公理化系统皮亚诺公理(PeanoAxioms)归纳公理皮亚诺算数系统自然数与计算机程序公理化的加法乘法定理递归函数累加与阶乘自然数同构自然数同构于数据结构第二章递归欧几里得算法λ\lambdaλ演
- 笔记--扩展欧几里得算法
Die love 6-feet-under
算法笔记c++
AcWing.877.欧几里得算法给定nnn对正整数aaai,bbbi,对于每对数,求出一组xxxi,yyyi,使其满足aaai×x×x×xi+b+b+bi×y×y×yi=gcd(a=gcd(a=gcd(ai,b,b,bi)))。输入格式第一行包含整数nnn。接下来nnn行,每行包含两个整数aaai,bbbi。输出格式输出共nnn行,对于每组aaai,bbbi,求出一组满足条件的xxxi,yyyi
- 求最大公约数的几种常见的方法 【详解】
阿明6
【C语言】C语言算法最大公约数
目录一、关于公约数二、计算最大公约数的方法1.辗转相除法(欧几里得算法)2.更相减损法(辗转相减法)3.分解质因数法4.穷举法5.递归法6.短除法三、总结一、关于公约数首先,先介绍一下公约数:公约数(公因数),一个能被若干个整数同时整除的的整数,公约数中最大的称为最大公约数。公约数与公倍数相反,就是既是A的约数同时也是B的约数的数,12和15的公约数有1,3,最大公约数就是3。再举个例子,30和4
- RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
- C++ 数论相关题目 扩展欧几里得算法(裴蜀定理)
伏城无嗔
算法笔记数论力扣算法c++
给定n对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai×xi+bi×yi=gcd(ai,bi)。输入格式第一行包含整数n。接下来n行,每行包含两个整数ai,bi。输出格式输出共n行,对于每组ai,bi,求出一组满足条件的xi,yi,每组结果占一行。本题答案不唯一,输出任意满足条件的xi,yi均可。数据范围1≤n≤105,1≤ai,bi≤2×109输入样例:246818输出样例:-1
- C++ 数论相关题目 线性同余方程 (扩展欧几里得算法的应用)
伏城无嗔
数论力扣算法笔记算法c++
给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai×xi≡bi(modmi),如果无解则输出impossible。输入格式第一行包含整数n。接下来n行,每行包含一组数据ai,bi,mi。输出格式输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。输出答案必须在int范围之内。
- 算法学习系列(二十九):裴蜀定理、扩展欧几里得算法
lijiachang030718
算法算法学习
目录引言一、裴蜀定理二、扩展欧几里得算法模板三、公式推导四、例题1.扩展欧几里得算法模板题2.线性同余方程引言这个扩展欧几里得算法用的还是比较多的,而且也很实用,话不多说直接开始吧。一、裴蜀定理裴蜀定理:对于任意正整数a和b,一定存在非零整数x和y,使得ax+by=gcd(a,b)裴蜀定理:对于任意正整数a和b,一定存在非零整数x和y,使得ax+by=gcd(a,b)裴蜀定理:对于任意正整数a和b
- 【数学】二元一次不定方程、裴蜀定理、扩展欧几里得算法与乘法逆元
OIer-zyh
数学#数论c++算法OI数论数学
二元一次不定方程形如ax+by=cax+by=cax+by=c的方程称为二元一次不定方程。在数论中一般研究该方程的整数解。明显原方程无整数解或有无穷多组整数解。裴蜀定理裴蜀定理:当且仅当gcd(a,b)∣c\gcd(a,b)|cgcd(a,b)∣c时,二元一次不定方程有整数解。一方面,ax+by≡0≡c(modgcd(a,b))ax+by\equiv0\equivc\pmod{\gcd(a,b
- GCD算法
所幸你是例外
数据结构与算法算法数据结构java
GCD(getGreatestCommonDivisor)获得最大公约数的方法。辗转相除法辗转相除法,又名欧几里得算法,该算法的目的是求出两个正整数的最大公约数。它是已知最古老的算法,其产生时间可追溯至公元前300年前。定理:两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。例如:求10和25的最大公约数,可以先求25除以10商2余5,那么10和25的最大公约数
- Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- 数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
- HDU 1567 扩展欧几里得,取模运算性质,小费马定理
qq_45992231
hdu算法
欧几里得算法求gcd(a,b)#include#include#include#defineMAXN_ROW100#defineMAXN_COL100usingnamespacestd;intgcd(inta,intb)//原理gcd(a,b)=gcd(b,a%b){//a,b大小不用考虑如果a#include#include#defineMAXN_ROW100#defineMAXN_COL100
- 【数论】一些数论知识
ssllth
数论&数学数论同余约数欧拉定理费马小定理
文章目录前言内容素数关于素数无限个的证明n以内的素数个数算术基本定理约数一个数的正约数个数(约数个数定理)一个数的正约数和(约数和定理)最大公约数和最小公倍数gcd(a,b)*lcm(a,b)=a*b的证明更相减损术欧几里得算法欧拉函数积性函数一些性质同余一些性质欧拉定理费马小定理贝祖定理(裴蜀定理)代码求通解ax+by=nax+by=nax+by=n方程的主要解题步骤线性同余方程乘法逆元线性求逆
- 算法学习系列(二十六):约数
lijiachang030718
算法算法学习
目录引言一、约数概念二、最大公约数三、求约数四、约数个数五、约数之和引言本文主要介绍一下数论当中的约数的概念,最大公约数、约数个数、约数之和概念,并用相应的题目来拿代码实现。一、约数概念约数:AmodB=0,那么B就是A的一个约数二、最大公约数用的是辗转相除法,又叫欧几里得算法intgcd(inta,intb){returnb?gcd(b,a%b):a;}提一下如果要求最小公倍数,只需a∗bgcd
- 大数据安全 | 期末复习(上)| 补档
啦啦右一
#大数据安全大数据与数据分析单例模式
文章目录概述⭐️大数据的定义、来源、特点大数据安全的含义大数据安全威胁保障大数据安全采集、存储、挖掘环节的安全技术大数据用于安全隐私的定义、属性、分类、保护、面临威胁安全基本概念安全需求及对应的安全事件古典密码学里程碑事件扩散和混淆的概念攻击的分类模运算移位加密仿射加密维吉尼亚密码DES混淆与扩散Feistel加密DES密钥生成DES流程数论欧几里得算法拓展欧几里得算法欧拉函数有限域运算AES密钥
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc